Contents

1 What is interoperability? .. 9
2 Industry standards .. 10
3 Compatible formats ... 11
4 Compatible software ... 13
5 Import to and export from Tekla Structures............................ 29
6 Conversion files .. 31
 6.1 Twin profile conversion files .. 32
 6.2 Create conversion files .. 33
7 Reference models .. 36
 7.1 Import a reference model .. 37
 7.2 View reference models .. 39
 7.3 Modify reference model details .. 43
 7.4 Lock reference models .. 43
 7.5 Detect changes between reference model versions 44
 7.6 Inquire reference model contents ... 50
 7.7 Reference model objects .. 51
 7.8 Examine reference model hierarchy and modify reference model objects .. 52
 7.9 Reference model assemblies .. 55
8 IFC .. 57
 8.1 IFC import .. 57
 8.2 Convert IFC objects into native Tekla Structures objects 58
 Profile conversion logic in IFC object conversion 59
 Example: Convert IFC objects into Tekla Structures objects in one go ... 60
 Limitations in IFC object conversion .. 63
 8.3 Check and change the IFC object conversion settings 64
 8.4 Convert selected IFC objects at one go 66
 8.5 Convert IFC objects using conversion change management - first conversion .. 67
 8.6 Convert IFC objects using conversion change management - update conversion ... 69
8.7 **IFC export**
- Define the IFC data for the exported model on project level................. 70
- Define IFC entities for the exported model objects............................... 71
- Export a Tekla Structures model or selected model objects to an IFC file..... 72
- Change the coordinate system of the exported IFC file......................... 77
- Define additional property sets for IFC export..................................... 77
- Check the exported IFC model.. 79
- IFC base quantities in exported IFC model.. 80
- Property set configuration files in IFC export... 80

9 **SketchUp**... 85
9.1 **Export a model to SketchUp**... 85

10 **DWG and DXF**.. 86
10.1 **Import a 2D or 3D DWG or DXF file**... 87
10.2 **Export a model to a 3D DWG or DXF file**....................................... 88
10.3 **Export a drawing to 2D DWG or DXF**.. 89
- Layers in exported DWG/DXF drawings.. 91
- Create layers in DWG/DXF files for drawing export............................... 92
- Assign objects to layers in drawing export.. 92
- Example: Create a rule for exporting beam marks to their own layer in drawing export.. 94
- Copying export layer settings to another project 95
- Define customized line type mappings in drawing export....................... 95
- Default line types in drawings... 98
- Example: Set up layers and export to DWG.. 99
 - Example: Create a selection filter for DWG export............................... 99
 - Example: Create layers for DWG export... 100
 - Example: Create a rule for drawing DWG export and assign a layer to the rule... 101
 - Example: Define a custom line type for DWG export.......................... 102
 - Example: Define line types and weights for layers in DWG export............ 102
 - Example: Export the drawing to DWG.. 104

11 **DGN**.. 107
11.1 **DGN import**.. 107
11.2 **DGN objects supported in reference models**.................................. 108
11.3 **Export to 3D DGN files**... 110

12 **LandXML**... 112

13 **PDF**.. 114
13.1 **Import a PDF to a model**... 114

14 **CAD**.. 115
14.1 **CAD import and export formats**.. 115
14.2 **Import an SDNF model**... 116
14.3 **Import a Plantview model**.. 119
14.4 **Import a SteelFab/SCIA model**... 120
14.5 **CAD model import settings**... 121
14.6 Export to CAD
14.7 CAD model export settings
14.8 Re-import a CAD model
14.9 Create import reports

15 FEM
15.1 FEM import and export file types
15.2 DSTV
15.3 Import a DSTV model
15.4 Import a STAAD model
STAAD table type specifications
15.5 Import a Stan 3d model
15.6 Import a Bus model
15.7 Export to STAAD
15.8 Export to DSTV
Supported DSTV entities

16 ASCII
16.1 Import a model in the ASCII format
16.2 Export a model to the ASCII format
ASCII file description

17 Attribute import
17.1 Import attributes
17.2 Input files in attribute import
Examples of input files used in attribute import
Data file used in attribute import
17.3 Attribute import settings

18 CIS and CIMSteel
18.1 Import a CIMSteel model
18.2 Export to a CIMSteel analysis model
18.3 Export to a CIMSteel design/manufacturing model
CIMSteel conversion files

19 MIS
19.1 Export a MIS list
19.2 Information on MIS file types

20 FabTrol XML
20.1 Import a FabTrol XML file

21 NC files
21.1 DSTV file description
21.2 Create NC files in DSTV format ... 170
21.3 NC file settings .. 171
21.4 Customize NC file header information .. 182
21.5 Create pop-marks in NC files .. 183
21.6 Create contour marking in NC files .. 187
21.7 Fittings and line cuts in NC files ... 189
21.8 Create tube NC files .. 190
21.9 Create NC files in DXF format ... 191
teka_dstv2dxf_<env>.def file description ... 191
21.10 Create NC files in DXF format using Convert_DSTV2DXF 201
21.11 Create NC files in DXF format using teka_dstv2dxf.exe 202

22 HMS ... 204
22.1 Export to the HMS format ... 204
22.2 HMS Export settings .. 205

23 ELiPLAN ... 209
23.1 Import an ELiPLAN status data file .. 209
23.2 Export an ELiPLAN data file ... 210
23.3 ELiPLAN user-defined attributes .. 211
23.4 ELiPLAN export settings .. 212
23.5 Parameters tab ... 213
23.6 Plotter data tab ... 215
23.7 Data content tab ... 215

24 BVBS ... 217
24.1 Export to the BVBS format ... 217
24.2 Export settings .. 218
24.3 Parameters tab .. 218
24.4 Advanced tab ... 221
24.5 Checking tab ... 223
24.6 Reinforcing bar length calculation in BVBS export 224

25 Unitechnik .. 226
25.1 Export to the Unitechnik format .. 228
25.2 Unitechnik export: Main tab ... 228
25.3 Unitechnik export: TS configuration tab .. 233
25.4 Unitechnik export: Embeds tab .. 243
25.5 Unitechnik export: Reinforcement tab .. 248
25.6 Unitechnik export: Validation tab .. 256
25.7 Unitechnik export: Reinf. data specification tab 258
25.8 Unitechnik export: Data specification tab .. 259
25.9 Unitechnik export: Mounting part data specification tab................................. 261
25.10 Unitechnik export: Line attributes tab... 262
25.11 Unitechnik export: Pallet tab.. 265
25.12 Unitechnik export: Log files tab.. 266
26 Layout Manager.. 268
26.1 Create a group in Layout Manager.. 269
 Define numbering settings for groups in Layout Manager.................................. 270
 Define a local coordinate system for a group in Layout Manager.......................... 271
26.2 Create a layout point.. 271
26.3 Create a layout line... 272
26.4 View groups, layout points and layout lines in Layout Manager......................... 273
26.5 Export layout data from Layout Manager.. 274
 Define default export settings in Layout Manager.. 275
 Define the drawing scale in Layout Manager... 276
26.6 Import layout data to Layout Manager.. 277
 Define point file columns in Layout Manager... 278
 Measured points in Layout Manager.. 280
27 Tekla Web Viewer.. 283
27.1 Publish a model as a web page.. 283
27.2 Customize Web Viewer tooltips... 284
27.3 Web templates in Web Viewer.. 285
27.4 Send Web Viewer models... 285
27.5 Create a named view in Web Viewer... 286
27.6 View a model in Web Viewer.. 287
28 Tekla BIMsight... 289
28.1 Import reference models from Tekla BIMsight.. 289
28.2 Import additional reference models from a Tekla BIMsight project................. 290
28.3 Publish a model to Tekla BIMsight... 290
29 Tekla Structural Designer... 291
29.1 Example workflow of integration between Tekla Structures and Tekla Structural Designer... 292
29.2 Import with Tekla Structural Designer integrator.. 293
29.3 Re-import with Tekla Structural Designer integrator... 295
29.4 Export with Tekla Structural Designer integrator... 296
29.5 Additional information about integration between Tekla Structures and Tekla Structural Designer... 297
30 Tekla Warehouse.. 299
31 Trimble Connector.. 301
32 Analysis and design systems...305
 32.1 Analysis and design direct links..305
 32.2 Robot...306
 32.3 SAP2000..306
 32.4 STAAD.Pro...307
 32.5 ISM...307
 32.6 S-Frame...308
 The process of importing to and exporting from S-Frame..................308

33 Disclaimer..310
What is interoperability?

Interoperability is often seen as the missing link between different software systems. It allows best-of-breed applications to share common objects, geometry and properties between applications. Interoperability is a process, which allows diverse systems and organizations to work together. This allows common 3D models to be built or information and geometry defined in one system to be used in another. An example of this would be a 3D structural frame from a modeling application being transferred and used by an Analysis & Design system. Another example would be an Architectural model being used within a structural modeling system.
There are many industry standard file transfer formats. The principle ones supported by Tekla Structures are IFC, CIS/2, DSTV, SDNF, DGN, DXF, DWG, IGES, and STEP. Older formats are also included. For a tighter integration, you can link to Tekla Structures using the Tekla Open API technology.

The file name extension normally informs the user which format it is based upon. If you do not know what format it is, or the file does not import, then you will need to open the file in a text editor to look at the header information, where the file type and the authoring application is usually noted. With CIS/2 files the authoring application and version number is sometimes written at the end of the file.

See also
Compatible formats (page 11)
You can import and export several formats in Tekla Structures.

The following table lists many of the different formats you can use in Tekla Structures to import and export data. For information about software connected to the formats, see Compatible software (page 13).

<table>
<thead>
<tr>
<th>Format</th>
<th>Import</th>
<th>Export</th>
</tr>
</thead>
<tbody>
<tr>
<td>aSa (.TEK)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Autodesk (.dwg)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Autodesk (.dxf)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bentley ISM</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BIM Collaboration format (.bcf)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BVBS (.abs)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cadmatic models (.3dd)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CIS/2 LPM5/LPM6 analytical (.stp,.p21,.step)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CIS/2 LPM5/LPM6 design (.stp,.p21,.step)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CIS/2 LPM6 manufacturing (.stp,.p21,.step)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CPIxml</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DSTV (.nc,.stp,.mis)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EJe</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Elematic ELiPLAN, ELiPOS (.eli)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EPC</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Fabsuite (.xml)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FabTrol Kiss File (.kss)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FabTrol MIS Xml (.xml)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>High Level Interface File (.hli)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HMS (.sot)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>IBB Betsy (.fa,.f,.ev)</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Format</td>
<td>Import</td>
<td>Export</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>IFC2x2 (.ifc)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>IFC2x3 (.ifc)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IFCXML2X3 (.ifcXML)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IFCZIP (.ifcZIP)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Initial Graphics Exchange Specification (IGES) (.iges, .igs)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LandXML (.xml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsoft Project (.xml)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Microstation (.dgn)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Oracle Primavera P6 (.xml)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Plant Design Management System (.pdms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAP, Oracle, ODBC, etc.</td>
<td>X *</td>
<td>X *</td>
</tr>
<tr>
<td>SketchUp (.skp)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Staad ASCII file (.std)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Steel Detailing Neutral Format (.sdf, .sdnf, .dat)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Steel12000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP AP203 (.stp, .step)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>STEP AP214 (.stp, .step)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>StruM.I.S</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tekla BIMsight project file (.tbp)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tekla Collaboration file (.tczip)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tekla-FabTrol Report (.xsr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tekla Structural Designer neutral file (.cxl)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tekla Structures shape (.tsc)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Trimble Field Link .tfl</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Trimble LM80 (.txt, .cnx)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TubeNC (.xml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unitechnik (.uni, .cam)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Tekla OpenAPI used
Compatible software

The following table lists Tekla Structures compatible software and the formats that you can import to and export from Tekla Structures.

Many of the compatible interoperability applications, application links, or direct links are available on [Tekla Warehouse](https://www.tekla.com/).

<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
<th>Import to Tekla Structures</th>
<th>Export from Tekla Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D+</td>
<td>Trimble</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
</tr>
<tr>
<td>3ds Max</td>
<td>Autodesk</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGES (.iges, .igs)</td>
<td>IGES (.iges, .igs)</td>
</tr>
<tr>
<td>3ds Max Design/VIZ</td>
<td>Autodesk</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGES (.iges, .igs)</td>
<td>IGES (.iges, .igs)</td>
</tr>
<tr>
<td>A+ Software</td>
<td>ArmaPlus</td>
<td>BVBS (.abs), Soulé (.xml), aSa (.TEK)</td>
<td>BVBS (.abs), Soulé (.xml), aSa (.TEK)</td>
</tr>
<tr>
<td>Adapt</td>
<td>Adapt Corporatio n</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>Advanced Steel, Advanced Design/Engineering</td>
<td>Autodesk</td>
<td>CIS/2 LPM5 analytical (.stp, .p21, .step)</td>
<td>CIS/2 LPM5 analytical (.stp, .p21, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
</tr>
<tr>
<td>Product</td>
<td>Company</td>
<td>Import to Tekla Structures</td>
<td>Export from Tekla Structures</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Allplan/Planbar</td>
<td>Nemetschek</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td>ANSYS</td>
<td>ANSYS</td>
<td>IGES (.iges, .igs)</td>
<td>IGES (.iges, .igs)</td>
</tr>
<tr>
<td>ArchiCAD</td>
<td>Graphisoft /Nemetschek</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFCXML 2X3 (.xml)</td>
<td>IFCXML 2X3 (.xml)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFCZIP (.ifczip)</td>
<td>IFCZIP (.ifczip)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coordinated view v1</td>
<td>Coordinated view v1</td>
</tr>
<tr>
<td>ArchonCAD</td>
<td>ArchonCAD Ltd.</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGES (.iges, .igs)</td>
<td></td>
</tr>
<tr>
<td>Armaor</td>
<td>Ariadis</td>
<td></td>
<td>BVBS (.abs)</td>
</tr>
<tr>
<td>aSa Rebar</td>
<td>Applied Systems Associates Inc</td>
<td></td>
<td>aSa Rebar file (.TEK)</td>
</tr>
<tr>
<td>ASI</td>
<td>Applied Science International LLC</td>
<td></td>
<td>Staad ASCII file (.std)</td>
</tr>
<tr>
<td>AutoCAD</td>
<td>Autodesk</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>AutoCAD Architecture</td>
<td>Autodesk</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LandXML files (.xml)</td>
<td></td>
</tr>
</tbody>
</table>

Compatible software 14
<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
<th>Import to Tekla Structures</th>
<th>Export from Tekla Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoCAD MEP</td>
<td>Autodesk</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td>AutoPLANT</td>
<td>Bentley</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>AutoVue</td>
<td>Oracle</td>
<td></td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STEP AP214 (.stp, .step)</td>
</tr>
<tr>
<td>Aveva E3D</td>
<td>AVEVA</td>
<td>Microstation (.dgn)</td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf, .dat)</td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf, .dat)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.ifc based Tekla Collaboration files (.tczip)</td>
<td>.ifc based Tekla Collaboration files (.tczip)</td>
</tr>
<tr>
<td>AviCAD</td>
<td>Progress/ EBAWE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unitechnik (.cam), BVBS (.abs)</td>
</tr>
<tr>
<td>AxisVM</td>
<td>Inter-CAD Kft.</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td>Bentley Architecture</td>
<td>Bentley</td>
<td>Direct Link (ISM)</td>
<td>Direct Link (ISM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEP AP203/AP214 (.stp, .step)</td>
<td>STEP AP214 (.stp, .step)</td>
</tr>
<tr>
<td>Bentley Building</td>
<td>Bentley</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td>Electrical Systems</td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td>Product</td>
<td>Company</td>
<td>Import to Tekla Structures</td>
<td>Export from Tekla Structures</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Bentley Building Mechanical Systems</td>
<td>Bentley</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dx)</td>
<td>Autodesk (.dx)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEP AP203/ AP214 (.stp, .step)</td>
<td>STEP AP203/ AP214 (.stp, .step)</td>
</tr>
<tr>
<td>Bentley Inroads</td>
<td>Bentley</td>
<td>LandXML files (.xml)</td>
<td></td>
</tr>
<tr>
<td>Bentley Structural</td>
<td>Bentley</td>
<td>Direct Link (ISM)</td>
<td>Direct Link (ISM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dx)</td>
<td>Autodesk (.dx)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 design (.stp, .p21, .step)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEP AP203/ AP214 (.stp, .step)</td>
<td></td>
</tr>
<tr>
<td>Betsy</td>
<td>IBB – Consultant s & Engineers</td>
<td></td>
<td>Betsy .fa, Betsy .f, Betsy .ev</td>
</tr>
<tr>
<td>BIM Collaboration Format</td>
<td>BuildingSMART</td>
<td>BCF 1.0 (.bcf)</td>
<td>BCF 1.0 (.bcf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCF 2.0 (.bcf)</td>
<td>BCF 2.0 (.bcf)</td>
</tr>
<tr>
<td>Cadmatic</td>
<td>Cadmatic</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dx)</td>
<td>Autodesk (.dx)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadmatic models (.3dd)</td>
<td></td>
</tr>
<tr>
<td>CADmep+</td>
<td>MAP Software / Autodesk</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dx)</td>
<td>Autodesk (.dx)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td>Product</td>
<td>Company</td>
<td>Import to Tekla Structures</td>
<td>Export from Tekla Structures</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFCXML 2X3 (.xml)</td>
<td>IFCXML 2X3 (.xml)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFCZip (.ifczip)</td>
<td>IFCZip (.ifczip)</td>
</tr>
<tr>
<td>CADPipe</td>
<td>AEC Design Group</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>CADWorx Plant</td>
<td>Intergraph / Hexagon</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 analytical (.stp,.p21,.step)</td>
<td>CIS/2 LPM6 analytical (.stp,.p21,.step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 design (.stp,.p21,.step)</td>
<td>CIS/2 LPM6 design (.stp,.p21,.step)</td>
</tr>
<tr>
<td>CAESAR II</td>
<td>Intergraph / Hexagon</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td>CATIA</td>
<td>Dassault</td>
<td>Autodesk (.dwg)</td>
<td>Steel Detailing Neutral Format (.sdf,.sdnf)</td>
</tr>
<tr>
<td>CATIA</td>
<td>Dassault</td>
<td>Autodesk (.dxf)</td>
<td>STEP AP214 (.stp,.step)</td>
</tr>
<tr>
<td>CATIA</td>
<td>Dassault</td>
<td>IGES (.iges,.igs)</td>
<td></td>
</tr>
<tr>
<td>CATIA</td>
<td>Dassault</td>
<td>Steel Detailing Neutral Format (.sdf,.sdnf)</td>
<td></td>
</tr>
<tr>
<td>CATIA</td>
<td>Dassault</td>
<td>STEP AP203/AP214 (.stp,.step)</td>
<td></td>
</tr>
<tr>
<td>Concrete Pro</td>
<td>LAP Laser GmbH</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td>Concrete Pro</td>
<td>LAP Laser GmbH</td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>ConSteel</td>
<td>ConSteel Solutions Limited</td>
<td>ASCII</td>
<td></td>
</tr>
<tr>
<td>CYPECAD</td>
<td>Cype</td>
<td>Direct Link</td>
<td></td>
</tr>
<tr>
<td>Daystar Software</td>
<td>Daystar Software Inc.</td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>Daystar Software</td>
<td>Daystar Software Inc.</td>
<td>Steel Detailing Neutral Format (.sdf,.sdnf)</td>
<td>Steel Detailing Neutral Format (.sdf,.sdnf)</td>
</tr>
<tr>
<td>DDS-CAD</td>
<td>DDS</td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td>Diamonds</td>
<td>Buildsoft</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td>Digital Project</td>
<td>Gehry Technologies</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td>Digital Project</td>
<td>Gehry Technologies</td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>Digital Project</td>
<td>Gehry Technologies</td>
<td>IGES (.iges,.igs)</td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td>Company</td>
<td>Import to Tekla Structures</td>
<td>Export from Tekla Structures</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEP AP203/AP214 (.stp, .step)</td>
<td>STEP AP214 (.stp, .step)</td>
</tr>
<tr>
<td>DuctDesigner 3D</td>
<td>QuickPen / Trimble</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td>ebos</td>
<td>Progress/ EBAWE</td>
<td></td>
<td>Unitechnik (.cam)</td>
</tr>
<tr>
<td>elcoCAD</td>
<td>Hannappel SOFTWARE GmbH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>ELiPLAN</td>
<td>Elematic</td>
<td>ELiPLAN (.eli)</td>
<td>ELiPLAN (.eli)</td>
</tr>
<tr>
<td>ELiPOS</td>
<td>Elematic</td>
<td></td>
<td>ELiPLAN (.eli)</td>
</tr>
<tr>
<td>EliteCAD</td>
<td>Messerli Informatik</td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td></td>
</tr>
<tr>
<td>ETABS</td>
<td>Computers & Structure s, Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STEP AP214 (.stp, .step)</td>
</tr>
<tr>
<td>FabPro Pipe</td>
<td>UHP Process Piping Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>Fabsuite</td>
<td>Fabsuite</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td>FabTrol MRP</td>
<td>FabTrol</td>
<td>FabTrol MIS XML (.xml)</td>
<td>FabTrol MIS XML (.xml)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FabTrol KISS File (.kss)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tekla-FabTrol Report (.xsr)</td>
<td></td>
</tr>
<tr>
<td>FactoryCAD</td>
<td>Siemens</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>FelixCAD</td>
<td>SofTec</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>Product</td>
<td>Company</td>
<td>Import to Tekla Structures</td>
<td>Export from Tekla Structures</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>FEM Design</td>
<td>StruSoft</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td>Floor Pro</td>
<td>Adapt Corporation</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>FormZ</td>
<td>AutoDesSys, Inc.</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGES (.iges, .igs)</td>
<td>STEP AP214 (.stp, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEP AP203/AP214 (.stp, .step)</td>
<td></td>
</tr>
<tr>
<td>GSA</td>
<td>Oasys</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
</tr>
<tr>
<td>GT Strudl</td>
<td>GT Strudl</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
<td></td>
</tr>
<tr>
<td>HMS</td>
<td>HMS</td>
<td></td>
<td>HMS (.sot)</td>
</tr>
<tr>
<td>HOOPS</td>
<td>Tech Soft 3D</td>
<td></td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>Inventor</td>
<td>Autodesk</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGES (.iges, .igs)</td>
<td>STEP AP214 (.stp, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEP AP203/AP214 (.stp, .step)</td>
<td></td>
</tr>
<tr>
<td>IronCAD</td>
<td>IronCAD</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGES (.iges, .igs)</td>
<td>STEP AP214 (.stp, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEP AP203/AP214 (.stp, .step)</td>
<td></td>
</tr>
<tr>
<td>iTWO</td>
<td>RIB Software AG</td>
<td></td>
<td>CPIxml (.xml)</td>
</tr>
<tr>
<td>KeyCreator</td>
<td>Kubotek</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEP AP214 (.stp, .step)</td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td>Company</td>
<td>Import to Tekla Structures</td>
<td>Export from Tekla Structures</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Lantek</td>
<td>Lantek</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td>LEIT2000</td>
<td>SAA</td>
<td>Direct Link</td>
<td>BVBS (.abs)</td>
</tr>
<tr>
<td>LP-System</td>
<td>Lennerts & Partner</td>
<td>Direct Link</td>
<td>BVBS (.abs)</td>
</tr>
<tr>
<td>MagiCAD</td>
<td>Progman</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td>MasterFrame</td>
<td>MasterSeries</td>
<td>DSTV96 (.nc, .stp, .mis)</td>
<td>DSTV96 (.nc, .stp, .mis)</td>
</tr>
<tr>
<td>Maxon Cinema 4D</td>
<td>Nemetschek</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dwf)</td>
<td>Autodesk (.dwf)</td>
</tr>
<tr>
<td>Maya</td>
<td>Autodesk</td>
<td>Autodesk (.dwf)</td>
<td>STEP AP214 (.stp, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>Autodesk Maya</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>Autodesk (.dwf)</td>
</tr>
<tr>
<td>Meridian Prolog</td>
<td>Trimble</td>
<td>Direct Link</td>
<td></td>
</tr>
<tr>
<td>Mesh Welding</td>
<td>EVG (Filzmoser)</td>
<td>Unitechnik (.cam), BVBS (.abs)</td>
<td></td>
</tr>
<tr>
<td>Mesh Welding</td>
<td>A.W.M.</td>
<td>Unitechnik (.cam)</td>
<td></td>
</tr>
<tr>
<td>Mesh Welding</td>
<td>Progress / EBAWE</td>
<td>Unitechnik (.cam)</td>
<td></td>
</tr>
<tr>
<td>Microstation</td>
<td>Engineerin Systems Pty Limited</td>
<td>Autodesk (.dwf)</td>
<td>Autodesk (.dwf)</td>
</tr>
<tr>
<td>Microstation</td>
<td>Bentley</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dwf)</td>
<td>Autodesk (.dwf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td>Midos Gen</td>
<td>MIDAS</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td>ModeSt</td>
<td>Tecnisof</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
</tbody>
</table>

Compatible software
<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
<th>Import to Tekla Structures</th>
<th>Export from Tekla Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiframe</td>
<td>Daystar Software Inc.</td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
</tr>
<tr>
<td>Nastran</td>
<td>MSC Software Corporation</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGES (.iges, .igs)</td>
<td>IGES (.iges, .igs)</td>
</tr>
<tr>
<td>NavisWorks</td>
<td>Autodesk</td>
<td>Autodesk (.dwg)</td>
<td>Direct Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGES (.iges, .igs)</td>
<td>Direct Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEP AP203/AP214 (.stp, .step)</td>
<td></td>
</tr>
<tr>
<td>NISA</td>
<td>Cranes Software International Ltd. / CSC</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf, .dat)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tekla Collaboration files (.tczip)</td>
<td></td>
</tr>
<tr>
<td>NX (Unigraph)</td>
<td>Siemens</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGES (.iges, .igs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEP AP203/AP214 (.stp, .step)</td>
<td>STEP AP214 (.stp, .step)</td>
</tr>
<tr>
<td>PDMS</td>
<td>AVEVA</td>
<td>Microstation (.dgn)</td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf, .dat)</td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf, .dat)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tekla Collaboration files (.tczip)</td>
<td>Tekla Collaboration files (.tczip)</td>
</tr>
<tr>
<td>PDS</td>
<td>Intergraph / Hexagon</td>
<td>Microstation (.dgn)</td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel Detailing Neutral Format (.dat)</td>
<td>Steel Detailing Neutral Format (.dat)</td>
</tr>
<tr>
<td>PipeCAD</td>
<td>Mc4 Software</td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>PipeDesigner 3D</td>
<td>QuickPen / Trimble</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
</tbody>
</table>

Compatible software 21
<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
<th>Import to Tekla Structures</th>
<th>Export from Tekla Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plancal</td>
<td>Plancal Ag / Trimble</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>Plant-4D</td>
<td>CEA Technology</td>
<td></td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td>PowerConnect</td>
<td>Buildsoft</td>
<td>Work in progress</td>
<td>Work in progress</td>
</tr>
<tr>
<td>PowerFrame</td>
<td>Buildsoft</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td>PRIAMOS</td>
<td>GTSdata</td>
<td></td>
<td>CPIxml (.xml), Unitechnik (.cam)</td>
</tr>
<tr>
<td>Primavera</td>
<td>Oracle</td>
<td>P6 (.xml)</td>
<td>P6 (.xml)</td>
</tr>
<tr>
<td>ProCAM</td>
<td>HGG</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td>ProConcrete, ProSteel, ProStructures</td>
<td>Bentley</td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
</tr>
<tr>
<td>Pro/Engineer</td>
<td>PTC</td>
<td>IGES (.iges, .igs)</td>
<td>STEP AP214 (.stp, .step)</td>
</tr>
<tr>
<td>ProFit</td>
<td>Progress/EBAWE</td>
<td></td>
<td>BVBS (.abs)</td>
</tr>
<tr>
<td>Prokon</td>
<td>Prokon</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
</tr>
<tr>
<td>QUESTware</td>
<td>QUESTware Corporation</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td>RAM (CAD Studio)</td>
<td>Bentley</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 design (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 design (.stp, .p21, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISM</td>
<td>ISM</td>
</tr>
<tr>
<td>Product</td>
<td>Company</td>
<td>Import to Tekla Structures</td>
<td>Export from Tekla Structures</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Revit Architecture/MEP</td>
<td>Autodesk</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tekla Collaboration files (.tczip)</td>
</tr>
<tr>
<td>Revit Structure</td>
<td>Autodesk</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 design (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 design (.stp, .p21, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tekla Collaboration files (.tczip)</td>
</tr>
<tr>
<td>RFEM</td>
<td>Dlubal</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td>Rhinoceros</td>
<td>McNeel North America</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGES (.iges, .igs)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEP AP203/AP214 (.stp, .step)</td>
<td>STEP AP214 (.stp, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geometry Gym link</td>
<td>Geometry Gym link</td>
</tr>
<tr>
<td>RISA 3D (Suite)</td>
<td>Risa Technology</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 design (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 design (.stp, .p21, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
<td>Steel Detailing Neutral Format (.sdf, .sdnf)</td>
</tr>
<tr>
<td>RisaConnection</td>
<td>Risa Technology</td>
<td>Direct Link (US market)</td>
<td>Direct Link (US market)</td>
</tr>
<tr>
<td>Product</td>
<td>Company</td>
<td>Import to Tekla Structures</td>
<td>Export from Tekla Structures</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Robot Millenium</td>
<td>Autodesk</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 design (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 design (.stp, .p21, .step)</td>
</tr>
<tr>
<td>RSTAB</td>
<td>Dlubal</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td>SACS</td>
<td>Engineering Dynamics Inc.</td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steel Detailing Neutral Format (.sdnf)</td>
<td>Steel Detailing Neutral Format (.sdnf)</td>
</tr>
<tr>
<td>SAFE</td>
<td>Computers & Structures Inc.</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGES (.iges, .igs)</td>
<td>IGES (.iges, .igs)</td>
</tr>
<tr>
<td>SAM</td>
<td>Bestech Limited</td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td>SAP2000</td>
<td>Computers & Structures Inc.</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
</tr>
<tr>
<td>Schnell Software</td>
<td>Schnell Software</td>
<td>BVBS (.abs), Unitechnik (rebar/mesh)</td>
<td>BVBS (.abs), Unitechnik (rebar/mesh)</td>
</tr>
<tr>
<td>SCIA</td>
<td>Nemetschek</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.ifc</td>
<td>.ifc</td>
</tr>
<tr>
<td>SDS/2</td>
<td>Design Data</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step)</td>
</tr>
<tr>
<td>Product</td>
<td>Company</td>
<td>Import to Tekla Structures</td>
<td>Export from Tekla Structures</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CIS/2 LPM6 design (.stp, .p21, .step) Microstation (.dgn)</td>
<td></td>
<td>CIS/2 LPM6 design (.stp, .p21, .step) Microstation (.dgn)</td>
<td></td>
</tr>
<tr>
<td>S-FRAME</td>
<td>S-FRAME Software Inc.</td>
<td>Direct Link, Autodesk (.dxf)</td>
<td>Direct Link, Autodesk (.dxf)</td>
</tr>
<tr>
<td>SketchUp Make</td>
<td>Trimble</td>
<td>SketchUp (.skp)</td>
<td>SketchUp (.skp)</td>
</tr>
<tr>
<td>SketchUp Pro</td>
<td>Trimble</td>
<td>SketchUp (.skp), Autodesk (.dwg), Autodesk (.dxf)</td>
<td>SketchUp (.skp), Autodesk (.dwg), Autodesk (.dxf)</td>
</tr>
<tr>
<td>Smart 3D (SmartPlant / SmartMarine)</td>
<td>Intergraph / Hexagon</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step) CIS/2 LPM6 design (.stp, .p21, .step) Microstation (.dgn), IFC2X3 (.ifc), with SmartPlant 3D</td>
<td>CIS/2 LPM6 analytical (.stp, .p21, .step) CIS/2 LPM6 design (.stp, .p21, .step) Microstation (.dgn)</td>
</tr>
<tr>
<td>Solibri Model Checker/Model Viewer</td>
<td>Solibri</td>
<td>IFC2X3 (.ifc)</td>
<td></td>
</tr>
<tr>
<td>SolidEdge</td>
<td>Siemens</td>
<td>Autodesk (.dxf), Microstation (.dgn), IGES (.iges, .igs), STEP AP203/AP214 (.stp, .step)</td>
<td>Autodesk (.dxf), Microstation (.dgn), STEP AP214 (.stp, .step)</td>
</tr>
<tr>
<td>SolidWorks</td>
<td>Dassault</td>
<td>Autodesk (.dwg), IFC2X3 (.ifc), STEP AP214 (.stp, .step)</td>
<td>Autodesk (.dwg), IFC2X3 (.ifc), STEP AP214 (.stp, .step)</td>
</tr>
<tr>
<td>Product</td>
<td>Company</td>
<td>Import to Tekla Structures</td>
<td>Export from Tekla Structures</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Soulé</td>
<td>Soulé Software Inc.</td>
<td>.xml, BVBS(.abs)</td>
<td></td>
</tr>
<tr>
<td>SPACE GASS</td>
<td>SPACE GASS</td>
<td>CIS/2 LPM6 analytical (.stp,.p21,.step)</td>
<td>CIS/2 LPM6 analytical (.stp,.p21,.step)</td>
</tr>
</tbody>
</table>
| SpaceClaim | SpaceClaim Co. | Autodesk (.dwg)
Autodesk (.dxf)
IGES(.iges,.igs)
STEP AP203/AP214 (.stp,.step) | Autodesk (.dwg)
Autodesk (.dxf)
STEP AP214 (.stp,.step) |
| STAAD.Pro | Bentley | Direct Link
Autodesk (.dwg)
Autodesk (.dxf)
CIS/2 LPM6 analytical (.stp,.p21,.step)
Steel Detailing Neutral Format (.sdf,.sdnf)
ISM | Direct Link
Autodesk (.dwg)
Autodesk (.dxf)
CIS/2 LPM6 analytical (.stp,.p21,.step)
Steel Detailing Neutral Format (.sdf,.sdnf)
ISM |
| Steel Projects | Steel Projects | Direct Link | Direct Link |
| Steel Smart System | Applied Science International, LLC | Autodesk (.dwg)
Autodesk (.dxf) | Autodesk (.dwg)
Autodesk (.dxf) |
| StruCAD | Trimble | Autodesk (.dwg)
Autodesk (.dxf)
CIS/2 LPM6 analytical (.stp,.p21,.step)
IFC2X3 (.ifc)
Steel Detailing Neutral Format (.sdf,.sdnf) [use SDNF version 2.0] | Autodesk (.dwg)
Autodesk (.dxf)
CIS/2 LPM6 analytical (.stp,.p21,.step)
IFC2X3 (.ifc)
Steel Detailing Neutral Format (.sdf,.sdnf) [use SDNF version 2.0] |
| StructureWorks | Structure Works LLC. | Autodesk (.dwg)
Autodesk (.dxf) | STEP AP214 (.stp,.step) |

Compatible software 26
<table>
<thead>
<tr>
<th>Product</th>
<th>Company</th>
<th>Import to Tekla Structures</th>
<th>Export from Tekla Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUDS</td>
<td>SoftTech</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td>StruM.I.S</td>
<td>StruM.I.S</td>
<td>Direct Link</td>
<td>.bswx</td>
</tr>
<tr>
<td>Tekla BIMsight</td>
<td>Trimble</td>
<td>Tekla BIMsight Project (.tbp)</td>
<td>Tekla BIMsight Project (.tbp)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IFCXML (.ifcXML)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IFCzip (.ifcZIP)</td>
</tr>
<tr>
<td>Tekla Field3D</td>
<td>Trimble</td>
<td>.ifc</td>
<td></td>
</tr>
<tr>
<td>Tekla Civil</td>
<td>Trimble</td>
<td>Direct Link LandXML files (.xml)</td>
<td>Direct Link .ifc</td>
</tr>
<tr>
<td>Tekla Collaboration</td>
<td>Trimble</td>
<td>Tekla Collaboration files (.tczip)</td>
<td>Tekla Collaboration files (.tczip)</td>
</tr>
<tr>
<td>Tekla Structural Designer</td>
<td>Trimble</td>
<td>Neutral XML file .cxl</td>
<td>Neutral XML file .cxl</td>
</tr>
<tr>
<td>Trimble Business Centre</td>
<td>Trimble</td>
<td>LandXML files (.xml)</td>
<td></td>
</tr>
<tr>
<td>Trimble Connect</td>
<td>Trimble</td>
<td>Direct Link .ifc</td>
<td>Direct Link .ifc</td>
</tr>
<tr>
<td>Trimble Field Link</td>
<td>Trimble</td>
<td>.tfl</td>
<td>.tfl</td>
</tr>
<tr>
<td>Trimble LM80</td>
<td>Trimble</td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LM80 (.cnx,.txt)</td>
<td>LM80 (.cnx,.txt)</td>
</tr>
<tr>
<td>Trimble LM80 Desktop</td>
<td>Trimble</td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LM80 (.cnx,.txt)</td>
<td>LM80 (.cnx,.txt)</td>
</tr>
<tr>
<td>TurboCAD</td>
<td>IMSI Design</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEP AP203/AP214 (.stp,.step)</td>
<td>STEP AP214 (.stp,.step)</td>
</tr>
<tr>
<td>Product</td>
<td>Company</td>
<td>Import to Tekla Structures</td>
<td>Export from Tekla Structures</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>UniCAM</td>
<td>Unitechnik</td>
<td></td>
<td>Unitechnik (.cam, .uni)</td>
</tr>
<tr>
<td>Unigraphics</td>
<td>Siemens PLM</td>
<td></td>
<td>IGES (.iges, .igs)</td>
</tr>
<tr>
<td></td>
<td>Software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VectorWorks</td>
<td>Nemetschek</td>
<td>IFC2X3 (.ifc)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IGES (.iges, .igs)</td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td>Vico Office</td>
<td>Trimble</td>
<td></td>
<td>Direct Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IFC2X3 (.ifc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IfcXML 2X3 (.xml)</td>
<td>IfcXML 2X3 (.xml)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Microstation (.dgn)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.xls</td>
<td>.xls</td>
</tr>
<tr>
<td>Vico Schedule Planner</td>
<td>Trimble</td>
<td>Direct Link</td>
<td>Direct Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.xml</td>
<td>.xml</td>
</tr>
<tr>
<td>Volo View</td>
<td>Autodesk</td>
<td>Autodesk (.dwg)</td>
<td>Autodesk (.dwg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autodesk (.dxf)</td>
<td>Autodesk (.dxf)</td>
</tr>
</tbody>
</table>

See also
Compatible formats (page 11)
Import to and export from Tekla Structures

Tekla Structures has several tools you can use to import and export physical and reference models and the information they contain.

For details about compatible software in import and export, see Compatible software (page 13).

NOTE The import and export functionality is not available in all Tekla Structures configurations. For more information, see Tekla Structures configurations.

You can use import and export in Tekla Structures for several purposes:

- You can import reference models to Tekla Structures. For example, you can import an architectural model, a plant design model, or a heating, ventilating and air-conditioning (HVAC) model as a reference model. Reference models can also be simple 2D drawings that are imported and then used as a layout to directly build the model on.

- You can import 2D or 3D models created by other software, then detail or manipulate the structural objects using Tekla Structures. Once the model is complete, you can export it, and return it to the architect or engineer for review.

- You can create reports from the imported models from most of the formats.

- You can export Tekla Structures models for use in Analysis & Design (several formats). Then you can import the Analysis & Design results back to the Tekla Structures model.

- Various model transfers can be completed for the engineering and contractor phase of the project.

- You can import shapes from many formats. Shapes are used in defining items.
You can export data for use in manufacturing information systems and in the fabrication phase:

- You can export CNC data (Computer Numerical Control) for use by automated cutting, drilling and welding CNC machinery.
- You can export to MIS (Manufacturing Information Systems) so that fabricators can track project progress, for example.

Click the links below to find out more about the various types of import and export:

- Reference models (page 36)
- IFC (page 57)
- SketchUp (page 85)
- DWG and DXF (page 86)
- LandXML (page 112)
- NC files (page 167)
- PDF (page 114)
- DGN (page 107)
- CAD (page 115)
- FEM (page 136)
- ASCII (page 146)
- Attribute import (page 150)
- CIS and CIMSteel (page 157)
- MIS (page 163)
- FabTrol XML (page 165)
- HMS (page 204)
- ELiPLAN (page 209)
- BVBS (page 217)
- Unitechnik (page 226)
- Layout Manager (page 268)
- Tekla Web Viewer (page 283)
- Tekla BIMsight (page 289)
- Tekla Structural Designer (page 291)
- Trimble Connector (page 301)

In addition to these built-in import and export tools you have a variety of links to other applications available in Tekla Warehouse that you can download.
6 Conversion files

Conversion files map Tekla Structures profile, twin profile, and material names with names used in other software. Conversion files are simple text files, containing the Tekla Structures name in the first column, and the name used in the other software package in the second column. Columns are separated by a space. All parametric profiles must be entered in the profile conversion file.

You can use the same conversion file both when importing and exporting models, and you can specify the location of conversion files in most of the import and export tools.

If you enter a conversion file name without a path, Tekla Structures searches for the file in the current model folder. If you leave the box empty, Tekla Structures searches for the file indicated by the advanced option XS_PROFDB in File menu --> Settings --> Advanced options --> File Locations. This is also the case, if the tool does not allow you to define the path and conversion file.

Tekla Structures has several conversion files in the standard installation, and you can also create your own. Standard conversion files are located in the
environments<environment>\profiles folder. All conversion files have the .cnv extension.

See also
Twin profile conversion files (page 32)
Create conversion files (page 33)

6.1 Twin profile conversion files
Tekla Structures contains separate conversion files for twin profiles, and it reads the twin profile conversion file before the profile conversion file, so you must include the profiles from the original model in the import.

The twin profile conversion file is a text file containing the profile prefix (characters only) and the distance between the profiles in mm, separated by a space. Tekla Structures converts all profiles with the specified prefix to twin profiles.

The twin profile conversion file could be named twin_profiles.cnv and it could contain lines such as the one below:

```
DL 20
```

The distance between the profiles is the same for all profiles with the same profile prefix. For example, profiles with the prefix DL will always have the same spacing. If you want different spacing values, then you need to use a different profile prefix.

You also need to add the twin profile to the profile conversion file to get the DL profile converted to L-profile:

```
L200*20 DL200/20-20
```

Limitations
- Twin profile conversion cannot be used for profiles that start with a number. This means that you cannot define double angles as 2L. Instead, you need to use DL as the prefix for a twin profile, for example:

- Twin profile conversion does not work for FEM import. We recommend that each angle is modeled separately rather than as twin profiles, as SP3D does not control the gaps between members in the same way as Tekla Structures and there are, for example, various conversion and mapping difficulties. It is easier to convert members that are modeled as two members.
6.2 Create conversion files

You can create your own conversion files if the ones that come with Tekla Structures installation do not suit your needs.

1. Open an existing conversion file using any standard text editor.

 By default, conversion files are located in ...\ProgramData\Tekla Structures\<version>\environments\<environment>\profil.

2. Save the file with another name.

 If the export/import tool allows you to define the path to the conversion file, you can save the file where you like. If this is not the case, save the file in a location defined by the advanced option XS_PROFDB in File menu --> Settings --> Advanced options --> File Locations.

3. Modify the file: enter profile names recognized by Tekla Structures in the first column, and the corresponding name recognized by the other software in the second column.

 While modifying, ensure that:
 • You do not have blank material definitions (" ", empty quotation marks).
 • You do not have spaces in the profile position strings. For example, enter "Hand_Rail" not Hand Rail".

4. Save your changes.

NOTE

- All the three files (profile, twin profile and material) are not needed if the differences in the profile name is just concerning * X or x formats, because these are normally handled automatically. For example, if you wanted to import UC254x254x73 to be UC254*254*73, the lower case "x" is automatically changed to "X" so the format of the conversion file would be UC254*254*73 254X254X73.

- If you have problems importing the model, check any error messages in the Tekla Structures log file, and check the conversion files.

Example

Below are some examples of conversion files:

! Profile name conversion Tekla Structures -> SDNF

!
! If Converted-name does not exist, it will be the same as Tekla Structures-name.

! Tekla Structures-name Converted-name

C10X15.3 C10X15.3
C10X20 C10X20
C10X25 C10X25
C10X30 C10X30
C12X20.7 C12X20.7
C12X25 C12X25
C12X30 C12X30
C15X33.9 C15X33.9
C15X40 C15X40
C15X50 C15X50
C3X4.1 3X4.1

! Profile name conversion Tekla Structures -> DSTV

! If Converted-name does not exist, it will be the same as Tekla Structures-name.

! Tekla Structures-name Converted-name

C10X15.3 C10X15.3
C10X20 C10X20
C10X25 C10X25
C10X30 C10X30
C12X20.7 C12X20.7
C12X25 C12X25
C12X30 C12X30
C15X33.9 C15X33.9
C15X40 C15X40
C15X50 C15X50
C3X4.1 3X4.1

Below there is first an example of an incorrect conversion file and then of a correct one, errors are highlighted:

00100782 4 0 2 "brace" "Tread 4" 1 "TREAD4.5" "0.000000 0 0 0.000000 1.000000 0.000000 16.250000 13.154267 3.857143 15.500000 13.154267 3.857143 0.000000 0.000000 0.000000
A reference model is a file that helps you to build a Tekla Structures model. A reference model is created in Tekla Structures or another software or modeling tool and imported to Tekla Structures.

For example, an architectural model, a plant design model, or a heating, ventilating and air-conditioning (HVAC) model can be used as a reference model. Reference models can also be simple 2D drawings that are imported and then used as a layout to directly build the model on. You can snap to reference model geometry.

Tekla Structures loads reference models only when they are needed, not every time you open a model. Tekla Structures does not save the reference model when you save the current model, but it saves the link to the reference model. The filename extension of a saved reference model properties file is .rmip.json. The values of Code, Title, Phase and Description cannot be saved in the standard properties file.

The following file types are supported:

- AutoCAD files .dxf
- AutoCAD files .dwg (supported version ACAD2014 and earlier)
- Cadmatic files .3dd
- IFC files .ifc, .ifczip, .ifcxml
- IGES files .igs, .iges
- LandXML files .xml
- MicroStation files .dgn, .prp
- PDF files .pdf
- Tekla Collaboration files .tczip
- SketchUp files .skp (supported version SketchUp 2016 and earlier)
- STEP files .stp, .STEP
- Tekla Collaboration files .tczip
Some reference models are automatically subdivided or split into reference model objects.

TIP You can disable the roll-over highlight, which should speed up zooming.

See also
- Import a reference model (page 37)
- Modify reference model details (page 42)
- Lock reference models (page 43)
- View reference models (page 39)
- Detect changes between reference model versions (page 44)
- Reference model objects (page 51)
- Inquire reference model contents (page 50)
- Examine reference model hierarchy and modify reference model objects (page 52)

7.1 Import a reference model

You can import reference models in a Tekla Structures model. You can use the reference models to overlay different discipline models with your own model. These disciplines can be architect, plant engineer, services engineer or other structural disciplines.

1. Open a Tekla Structures model where you want to insert the reference model.
2. Open the **Reference Models** list by clicking the **Reference Models** button in the side pane.
3. In the **Reference Models** list, click the **Add model** button.
4. In the **Add model** dialog box, if you have any previously created reference model properties files, load the desired file by selecting the file from the properties file list at the top.
5. In the **Add model** dialog box, browse for the reference model file by clicking **Browse**.
 You can also drag reference models from Windows Explorer. You can import several models at a time.
6. Select a group for the model or enter the name of a new group.
If you do not enter a name for the group, the reference model is inserted in the Default group.

You can also drag models to an existing group or create a new group later on.

7. Select a Coordinate system, which determines whether the model is inserted relative to the model origin or work plane.

8. Select where you want to place the reference model. You can enter coordinates in the Origin boxes or pick a position for the reference model origin.

The origin is displayed as a handle.

9. Set the Scale of the reference model if it is different from the one in the Tekla Structures model.

Note that you need to set the scale for a DWG or a DXF file already in AutoCAD. When you define the measurement unit for a DWG or a DXF file and save the file in AutoCAD, the unit is recognized in Tekla Structures, and the reference model is scaled correctly.

10. You can rotate the model around model Z axis by entering the desired value in the Rotation box.

11. Click More to show more details and add the Code, Title, Phase and Description of the reference model.

By default, the title is the same as the name of the imported reference model. You may want to use the name of the discipline or the company instead, for example. The code could be a site number, project number, or accounting number. Write the description according to the company conventions. The phase is the design phase of the reference model (not the phase in the Tekla Structures model).

Below is an example of these details when you inquire the reference model.

<table>
<thead>
<tr>
<th>Code</th>
<th>123456</th>
</tr>
</thead>
<tbody>
<tr>
<td>ref_description</td>
<td>Basement</td>
</tr>
<tr>
<td>Title</td>
<td>First phase</td>
</tr>
<tr>
<td>RevisionPhase</td>
<td>1a</td>
</tr>
</tbody>
</table>

You can also modify all the details after you have inserted the model.

12. Click Add model.

13. If the inserted reference model lies outside the work area and is not fully or at all visible in the model view, Tekla Structures displays the "Objects outside the work area" warning message. Click Expand to extend the work area to see the reference model in the model view.
The reference model is inserted in the current phase of the Tekla Structures model.

When a reference model is imported or updated, reference model data is copied to Tekla Structures model internal data storage located in the `<current model>\datastorage\ref` folder. The reference model is visible even if the original file is removed from its original location. The reference model data in this folder should not be touched.

NOTE Do not import the same reference model to the Tekla Structures model several times. If there are duplicate reference models, there are also duplicate GUIDs.

When you want to update the reference model, do not delete the old reference model from an open Tekla Structures model and replace it with a new one, because then you would lose the work done on reference objects in the old model. Use the change detection functionality instead.

See also

Modify reference model details (page 42)

7.2 View reference models

There are many ways you can select what you want to show about the reference models and how.

<table>
<thead>
<tr>
<th>To:</th>
<th>Do this:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open the Reference Models list</td>
<td>• Click the Reference Models button in the side pane on the right side of the Tekla Structures main window.</td>
</tr>
<tr>
<td>Hide and show reference models</td>
<td>• Click the eye button next to the model you want to hide. The button changes to <code>🔒</code> and the reference model is hidden in the 3D view. • Click the eye button again to show the model.</td>
</tr>
<tr>
<td>Hide and show a group of reference models</td>
<td>• Click the eye button next to the group you want to hide. The group eye button and the reference model eye buttons all change to <code>🔒</code>, and all the</td>
</tr>
<tr>
<td>To:</td>
<td>Do this:</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| reference models included in the group are hidden in the Tekla Structures model. | - Click the eye button again to show all the models in the group.
- If a group contains both hidden and visible models, the eye button for the group looks like this ![Eye Button](image) |
| Highlight the reference model in the 3D view | - Click the reference model in the Reference Models list. |
| Show reference model details | - Double-click the reference model in the Reference Models list. |
2. Ensure that the **Select assemblies** selection switch ![Select Assemblies](image) (for assemblies) or **Select objects in assemblies** ![Select Objects in Assemblies](image) (for parts) is active.
3. Point the reference model, hold down Shift and scroll to the hierarchy level where the desired reference model object is located.
4. Point the object and double-click it to open the reference model object details. |
| Rotate the reference model around model Z axis. | Enter the desired value in the Rotation box. |
| Hide and show reference model layers | 1. Double-click the reference model in the Reference Models list to open the details.
2. Click the small arrow on the Layers row to show the list of layers.
3. You can show and hide individual layers or all layers:
 • To hide all layers, click the eye button ![Eye Button](image) on the Layers row.
 • To hide individual layers, click the eye buttons ![Eye Button](image) of the individual layers.
 • To hide several layers, holding down Ctrl, click the desired layers and then... |
<table>
<thead>
<tr>
<th>To:</th>
<th>Do this:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>click the eye button of one of the selected layers.</td>
</tr>
<tr>
<td></td>
<td>• If the Layers list contains both hidden and visible layers, the eye button for the Layers row looks like this 🎨.</td>
</tr>
<tr>
<td></td>
<td>• If you hide all layers, the eye button for the Layers row changes to 🎨.</td>
</tr>
<tr>
<td></td>
<td>• If you hide individual layers, the eye button for the hidden layers changes to 🎨.</td>
</tr>
<tr>
<td>Detect changes in the reference model</td>
<td>1. Double-click the reference model in the Reference Models list to open the details.</td>
</tr>
<tr>
<td></td>
<td>2. In reference model Details, browse for an older version of the reference model, and click Modify.</td>
</tr>
<tr>
<td></td>
<td>3. Click the small arrow on the Change detection row to open the Change detection section.</td>
</tr>
<tr>
<td></td>
<td>4. Click the eye buttons 🎨 next to two versions in the Change detection list.</td>
</tr>
<tr>
<td></td>
<td>5. Click the buttons to select what you want to show (Inserted, Changed, Unchanged, Deleted).</td>
</tr>
<tr>
<td></td>
<td>6. Click Update view.</td>
</tr>
<tr>
<td></td>
<td>For details about change detection, see Detect changes between reference model versions (page 44)</td>
</tr>
<tr>
<td>Update all reference models</td>
<td>• If the file name or path has not changed, open the Reference Models list and click the Refresh button 🔄.</td>
</tr>
<tr>
<td></td>
<td>All models that are not up to date are reloaded. If a reference model is not found, a warning sign 🚨 is displayed.</td>
</tr>
<tr>
<td>To:</td>
<td>Do this:</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>• If the file name or path has not changed, open reference model details, browse for the new file and click Modify.</td>
<td></td>
</tr>
</tbody>
</table>
| **Update a single reference model** | 1. Double-click the reference model in the **Reference Models** list to open the details.
2. Click the **Refresh** button 🔄. The model is reloaded. If the reference model is not found, a warning sign 🔄 is displayed. |
| **View user-defined attributes** | 1. Double-click the reference model in the **Reference Models** list to open the details.
2. Click the small arrow on the **User-defined attributes** row to show the list of user-defined attributes.
3. The user-defined attributes that are specified for reference models in the **objects.inp** file are listed in the **User-defined attributes** list. Enter or select a value from the list. By default, the **objects.inp** is located in .. \ProgramData\Tekla Structures \<version>\environments\common \inp. You may also have some **objects.inp** files that you modify and keep in firm or project folders. These files are read in certain order. |

See also

- Modify reference model details (page 42)
- Reference model objects (page 51)
- Examine reference model hierarchy and modify reference model objects (page 52)
- Detect changes between reference model versions (page 44)
- Lock reference models (page 43)
7.3 Modify reference model details

After you have inserted a reference model, you can modify its details.

Limitation: Coordinates given in the Details area are always relative to model coordinates. You can modify the coordinate system only if model coordinate system is used in the reference model.

1. Click the Reference Models button in the side pane on the right of the Tekla Structures main window.
2. In the Reference Models list, double-click the reference model.
3. Change the desired details:
 - Change **Code**, **Title**, **Phase** and **Description** of the reference model.
 By default, the title is the same as the name of the imported reference model. You may want to use the name of the discipline or the company instead, for example. The code could be a site number, project number, or accounting number. Write the description according to the company conventions. The phase is the design phase of the reference model (not the phase in the Tekla Structures model).
 - Click the arrow on the Details row. In Details, you can import another version of the reference model using the File box, assign the model to a **Group**, set the model **Origin**, and adjust the model **Scale**.
 - Click the arrow on the User-defined attributes row, and enter values for the user-defined attributes.
 You may enter strings (texts), select dates or enter numeric information depending on the type of the user-defined attribute. The reference model user-defined attributes are defined in their own section in the objects.inp file. If you have several objects.inp files, they are read in a specific reading order, for more information, see Customizing user-defined attributes.
4. Click Modify. The changes that you made are implemented in the reference model.

See also
Import a reference model (page 37)

7.4 Lock reference models

You can prevent reference models from moving and from detail updates.

1. Click the Reference Models button in the side pane on the right of the Tekla Structures main window.
2. Move your mouse over the desired reference model in the **Reference Models** list. The **Lock** button is displayed.

![Reference Model Lock Button]

3. Click the **Lock** button.

Now the reference model is locked. You can only add values for user-defined attributes and work with layers, but you cannot modify the details in any other way or move the model.

![Locked Reference Model]

To unlock the reference model, click the **Lock** button again.

See also

- [Reference models](#)
- [Modify reference model details](#)

7.5 Detect changes between reference model versions

You can check the changes between different reference model versions in Tekla Structures using change detection. You can use change detection to detect changes between reference models from different disciplines, such as engineer or detailer. Changes are detected on object level. You can also compare Tekla Structures models if you have exported a Tekla Structures model into IFC format at least twice.

You may want to use change detection before IFC object conversion change management. Change detections is a prerequisite for providing reference object changes for Tekla Model Sharing change visualization.

Limitations

There are some limitations in change management:

- It is not possible to change comparison settings.
- The details list shows as c some of the properties that always change, such as COLUMNTYPE GUID. However, the changes list does not show these object as changed.
- Property comparison works only for IFC or IFC-based reference models. The following formats are supported:
 - .ifc
Change detection between new and an old reference model version

You can show changes between a new and an older reference model version. The changes in the browsed older reference model are not updated in the new reference model version. The changes between the versions are listed in the bottom pane, and you can check the changes in individual objects in the property details list. You can use this option when you just want to check the changes between versions.

1. Open the Reference Models list by clicking the Reference Models button in the side pane.
2. Open a reference model by double-clicking the model in the Reference Models list.
3. Open the Change detection list by clicking the arrow on the Change detection row.
4. Click Browse and browse for an earlier version of the reference model.
5. Ensure that you have both the original reference model and the browsed older reference model version visible by setting the eye buttons active in the Change detection section.
You can do any of the following in the changes list and in the details list:

- Click a row in the changes list to open the related property details list in the side pane. The property details list contains at least the name, location as origin and property set properties, basically the content is the same as in the reference object inquiry report. The details list also indicates how the individual properties have changed in the **Old value** and **New value** columns.

- To show the object in the model, click a row in the changes list, and then select the **Select objects in model view** check box.

- To zoom to the selected object in the model, click a row in the changes list and then select the **Zoom to selected** check box.

- To show only changes in the property details list, click a row in the changes list and then select the **Show only changes** check box.

- You can search for specific items using the search box at the bottom.
• If the changes list disappears, you can bring it back by clicking the Changes list button in the side pane. If the details list disappears, you can bring it back by clicking the Properties details button in the side pane. These two buttons are only visible when the Change detection command is active.

Update reference model and detect changes between versions
You can update a reference model with another version of the model, and detect the changes between these two reference model versions. For example, you may want to use this option when you have done the modifications in the reference model version, and want to update the original reference model with new information.

1. Open the Reference Models list by clicking the Reference Models button in the side pane.
2. Open a reference model by double-clicking the model in the Reference Models list.
3. Open another version of the reference model by browsing to it in the File box and click Modify.

 This updates the original reference model with the changed information in the other reference model version.

 You can open several versions, but you can only compare two versions at a time.

 You do not need to copy the reference models to the model folder.
4. On the Change detection row, click the arrow on the row to open the Change detection list.

 In the Change detection list, the current version is bolded. The newest version is at the top and the oldest at the bottom.
5. Ensure that both models are visible by setting the eye buttons active in the Change detection list.

 Comparison is active only when two eye buttons are active. You cannot have more than two eye buttons active at the same time. If you activate a third reference model in the list, the older version from previously visible model is automatically set inactive, and the comparison is done between the two models that have the active eye.
6. Set another version as the current version in the Change detection list by right-clicking the version in the list and selecting Set as current.

The current version does not have a pop-up menu, because setting a current version of the model current would affect IFC object conversion change management.

7. To delete a version, right-click the version in the Change detection list, and select Remove.

The current model version is modified, and this modification is shared in multiuser mode or Tekla Model Sharing.

You need to pay special attention to versioning and updating in a project. For example, if you remove a version, the current model is updated and you may end up with conflicts.

8. Select any of the check boxes for the following options: Changed, Unchanged, Inserted and/or Deleted, and then click the Update view button, which is displayed when you select an option.

9. Select any or all of the check boxes for the following options: Changed, Unchanged, Inserted and/or Deleted, and then click the Update view button, which is displayed when you select an option.

For example, select Inserted to show with green color the objects that were inserted between the two versions.

The changes list and the details list are displayed. The changes list content is based on the IFC content and has all physical object types. The colors are the same as the ones in Change detection.
10. You can do any of the following in the changes list and in the details list:

- Click a row in the changes list to open the related property details list in the side pane. The property details list contains at least the name, location as origin and property set properties, basically the content is the same as in the reference object inquiry report. The details list also indicates how the individual properties have changed in the Old value and New value columns.

- To show the object in the model, click a row in the changes list, and then select the Select objects in model view check box.

- To zoom to the selected object in the model, click a row in the changes list and then select the Zoom to selected check box.
To show only changes in the property details list, click a row in the changes list and then select the **Show only changes** check box.

You can search for specific items using the search box at the bottom.

If the changes list disappears, you can bring it back by clicking the **Changes list** button in the side pane. If the details list disappears, you can bring it back by clicking the **Properties details** button in the side pane. These two buttons are only visible when the **Change detection** command is active.

Remove old reference model versions automatically

You can remove old reference model versions automatically with the advanced option XS_REFERENCE_MODEL_KEEP_VERSIONS_COUNT.

See also

* Import a reference model (page 37)

7.6 Inquire reference model contents

You can inquire the contents of a reference model. This is something you might want to do after importing a reference model into Tekla Structures.

1. On the ribbon, click **Inquire object**.
2. In your Tekla Structures model, click the reference model you want to examine.

 The contents of the reference model are listed in the **Inquire Object** dialog box.
7.7 **Reference model objects**

Some types of reference models are automatically subdivided into *reference model objects*, which is an individual part of an imported reference model. You can define user-defined attributes separately for each reference model object and use them for reports and the view and selection filters. They can also be moved to a Tekla Structures model that is currently being worked on. Information included in a reference model object can be saved in the model database.

The reference model objects are read-only.

Whether the reference model supports splitting depends on the file format and file structure. *ifc* models are always automatically subdivided, and *dwg* files that include any of the following objects, are also automatically subdivided:

- block table
- polyface mesh
- polygon mesh
- proxy object (for example, ADT)
- ACIS objects (3DSolid, Body, Region)

The file formats *dgn*, *prp*, *skp*, *step*, and *iges* are not subdivided.
See also
Reference models (page 36)

7.8 Examine reference model hierarchy and modify reference model objects
You can view the reference model hierarchy and check the hierarchy level of different objects. You can also add user-defined attributes to the reference model objects. The added attributes can be used for filtering, for example. Additionally, you can view the native reference object attributes and properties.

1. Ensure that the Select assemblies selection switch (for assemblies) or Select objects in assemblies selection switch (for parts) is active.

2. Point the reference model, hold down Shift and scroll using the middle mouse button to the hierarchy level were the reference object is. Notice that if the cursor is too close to a grid, the hierarchy is not scrolled.

3. Do any of the following:
 • To inquire the native reference object properties and attributes, right-click the object and select Inquire.
 • To view or modify the user-defined attributes of a reference object, double-click the object to open the reference model object details.

TIP There are many more commands available for the selected reference model objects. Check rest of the commands on the pop-up menu.

Below is an example of a reference model representing a sanitary system. When you want to scroll the hierarchy, the selection switch Select assemblies
or **Select objects in assemblies** must be on. The 0 level IfcProject in the example is the upmost level.

Below you can see one of the reference objects on the 3 level, IfcBuildingStorey, of the same reference model.
The last level, level 4, shows the individual parts.

In the example below, one of the reference objects on the lowest level has been inquired.
7.9 Reference model assemblies

Imported IFC reference models can contain assemblies. You can select reference model assemblies in the model view and view assembly level information in Tekla Structures.

- You can add user-defined attributes to reference model assemblies.
- You can use the Inquire command to view information on reference model assemblies. For example, you can view GUIDs of child objects.
• You can create reports to view information on reference model assemblies.

See also
Select reference models, reference model objects and assemblies
Inquire object properties
Create a report
REFERENCE_ASSEMBLY
IFC stands for Industry Foundation Classes, the set of internationally standardized object definitions for use in the construction industry. IFC is developed as an open standard by buildingSMART.

IFC offers a high-level common language for the sharing of intelligent objects, such as building elements, between disciplines across the building life cycle. The principal benefit of IFC is the object description – not only does the IFC protocol preserve the full geometric description in 3D, but it also knows its location and relationships, as well as all the properties (or parameters) of each object.

See also
- IFC import (page 57)
- IFC export (page 70)

8.1 IFC import

You can import IFC models as reference models to Tekla Structures, and optionally convert the imported IFC objects into native Tekla Structures objects by using the IFC object converter or selected IFC reference objects using conversion change management. You can use imported IFC reference models, for example, in clash checking, reporting and scheduling.

Tekla Structures supports the following IFC schemas:
- IFC2X2
- IFC2X3 (recommended)

The IFC import functionality has the IFC certification granted by buildingSMART international: Certified Software.
The IFC reference model import (page 37) in Tekla Structures supports all the sub-objects of the IfcBuildingElement class and sub-objects of the IfcProduct class including:

- Architectural entities
- Structural entities
- Building services entities

IFC (.ifc) and ifcXML (.ifcXML) formats are supported. You can use compressed (.ifcZIP) or uncompressed import files.

8.2 Convert IFC objects into native Tekla Structures objects

You can convert most linear IFC reference objects such as beams, columns, braces, plates, slabs, footings and walls into native Tekla Structures objects. Conversion also supports polybeams that have curved sections, and have originally been exported from Tekla Structures, and double type UDAs. The purpose of converting IFC objects in Tekla Structures is to help in the creation of the structural model and to avoid rework in an early modeling phase.

In IFC object conversion, IFC objects are converted either as items or as extrusions. Conversion as item means that an IFC object is converted as a Tekla Structures item, where the 3D shape defines the geometry of the item. Conversion as extrusion means that an IFC object is converted as a part (column, beam, plate, etc.) that has a profile extruded to create the length of the part.

In IFC object conversion you need to do the following:

1. Before converting, check that the profiles and units in the IFC reference model are compatible with your environment.
2. Check the object conversion settings in the IFC object conversion settings dialog box and change them, if needed.
3. Convert the IFC objects to native Tekla Structures objects. There are two alternative ways available in object conversion:
 • Converting all selected reference model objects at one go using the **Convert IFC objects** button on the **Manage** tab.
 • Converting using the IFC object conversion change management. You can also perform an update conversion with a new reference model revision using the change management.

Is object conversion always necessary?

In Tekla Structures, reference model objects can be used in a way similar to the native objects, for example, in clash detection, reporting and scheduling. There is no need to have everything as native, because the reference model objects can also be used in many ways. For example, reference model objects can be shown in drawings and they can be listed in reports.

The reference files have the benefit compared to the copied files that the content of the files is automatically updated by the designer of that design discipline.

Profile conversion logic in IFC object conversion

Tekla Structures uses a certain logic in converting profiles in IFC object conversion.

Parametric profile used in IFC model, I-, L-, U-, C-, T-, Z-, Rectangle- and Circular type profiles can be defined parametrically:

1. If IFC file has been created with Tekla Structures, original profile name is used.
2. If profile with same name is found from Tekla Structures **Profile Catalog**, it will be used.
3. Otherwise, Tekla Structures checks parameter values to find a corresponding profile. If found, that will be used.
4. Otherwise, a default parametric profile is used.

Arbitrary profile used in IFC model, profile shape is defined with polygon:

1. If IFC file has been created with Tekla Structures, original profile name is used.
2. If the shape is detected and found from Tekla Structures catalog, that profile will be used. The shape detection supports the standard types of hot rolled profiles.
3. Otherwise, a new profile is created based on the description of the arbitrary profile.

B-rep geometry used in IFC model, object is defined with surfaces and profile geometry information is not available:
1. If corresponding item exists in Tekla Structures model, it is used.
2. Otherwise, a new item will be created and used.

If Conversion as item is used for extrusion type of part, new item is always created.

Example: Convert IFC objects into Tekla Structures objects in one go

In this example, you use an IFC model as a basis for your structural model. You will convert the beams and columns into native Tekla Structures objects.

1. Hide irrelevant IFC layers:
 a. Click the Reference Models button.
 b. In the Reference Models list, double-click the reference model to open the details.
 c. Open the Layers list by clicking the down arrow on the right.
 d. Hide the unnecessary layers by clicking the eye button next to the layer.
2. Select all visible IFC objects.

3. On the **Manage** tab, click **Convert IFC objects**.
 Tekla Structures converts the reference objects.

4. Check the profiles and materials of the IFC objects and map missing material:
 a. On the **File** menu, click **Settings --> IFC object conversion settings**.
 b. Click **Check**.
 Tekla Structures lists the missing profiles and materials.
 c. View the **Missing Profiles** and **Missing Materials** tabs.
 Tekla Structures lists a missing reference part material **Concrete Block**.
 d. Select **CONCRETE_UNDEFINED** from the list.
e. Click **Update Mapping Catalogs and Close**.

f. Select the **Create report after conversion** check box.

g. Click **OK** in the **IFC object conversion** dialog box.

5. On the **Manage** tab, click **Convert IFC objects** again.

Tekla Structures converts the objects.

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>Profile</th>
<th>Initial Profile</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id: 12479</td>
<td>BEAM</td>
<td>W610X82</td>
<td>W610X82</td>
<td>992</td>
</tr>
<tr>
<td>Id: 12472</td>
<td>BEAM</td>
<td>W610X82</td>
<td>W610X82</td>
<td>992</td>
</tr>
<tr>
<td>Id: 12476</td>
<td>BEAM</td>
<td>W610X82</td>
<td>W610X82</td>
<td>992</td>
</tr>
<tr>
<td>Id: 12478</td>
<td>BEAM</td>
<td>W610X82</td>
<td>W610X82</td>
<td>992</td>
</tr>
<tr>
<td>Id: 12471</td>
<td>BEAM</td>
<td>W610X82</td>
<td>W610X82</td>
<td>992</td>
</tr>
<tr>
<td>Id: 12474</td>
<td>BEAM</td>
<td>W610X82</td>
<td>W610X82</td>
<td>992</td>
</tr>
<tr>
<td>Id: 12477</td>
<td>BEAM</td>
<td>W610X82</td>
<td>W610X82</td>
<td>992</td>
</tr>
<tr>
<td>Id: 12470</td>
<td>BEAM</td>
<td>W610X82</td>
<td>W610X82</td>
<td>992</td>
</tr>
<tr>
<td>Id: 12472</td>
<td>BEAM</td>
<td>W610X82</td>
<td>W610X82</td>
<td>992</td>
</tr>
</tbody>
</table>

The **Class** for all the converted objects is 992. That means that the profile of the converted object may be incorrectly rotated because there is no parametrized profile data in the IFC model.

6. Check the conversion changes list:

 - Select objects in the changes list to highlight them in the model: Use the buttons **Select objects in model view** and **Zoom to selected**.

 - Compare the converted objects with the IFC objects.

 - Use the **Inquire objects** button on the ribbon to view detailed information on objects.
Below is an image of converted beams and columns.

Limitations in IFC object conversion

Tekla Structures is dependent on the quality of the IFC model, because it uses information available in the model when converting objects.

Tekla Structures converts most linear IFC objects to native Tekla Structures objects.

The following limitations exist in IFC object conversion:

- If the IFC model does not comply with standard, it might not be converted as expected.
- Bolts, reinforcement and welds cannot be converted to native Tekla Structures objects.
- The currently supported physical elements: IfcBeam, ifcColumn, ifcMember, ifcPile, ifcFooting, ifcPlate, ifcDiscreteAccessory, ifcSlab, ifcWall, ifcWallStandardCase, ifcRailing and ifcBuildingElementPart.
- Only SweptSolid, Brep, CSG and Clipping representations are supported.
- Multiple representations for one object are not supported.
- Profile offset is not supported.
- Profiles with more than 99 polygon points are not converted correctly.
• Sometimes, chamfers may be converted incorrectly.

8.3 Check and change the IFC object conversion settings

Before you start converting, check the conversion settings and change them if necessary.

1. On the File tab, click Settings --> IFC object conversion settings.
2. In the IFC object conversion settings dialog box, check and change the conversion settings:

<table>
<thead>
<tr>
<th>Create report after conversion</th>
<th>Not used any longer. The changes list replaces the report.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convert Brep object</td>
<td>Convert B-rep objects into Tekla Structures objects.</td>
</tr>
<tr>
<td></td>
<td>After conversion B-rep objects are converted to items, and</td>
</tr>
<tr>
<td></td>
<td>the items are added to the shape catalog. The items belong</td>
</tr>
<tr>
<td></td>
<td>to class 996.</td>
</tr>
<tr>
<td>Set handles to top flange</td>
<td>Set the reference lines of beams to top flange.</td>
</tr>
<tr>
<td></td>
<td>If Set handles to top flange is not selected, the</td>
</tr>
<tr>
<td></td>
<td>reference lines of beams are located in the middle of</td>
</tr>
<tr>
<td></td>
<td>the beams.</td>
</tr>
<tr>
<td>Primary profile mapping</td>
<td>Profile name: Map profiles primarily by comparing the</td>
</tr>
<tr>
<td></td>
<td>profile names between the IFC model and Tekla Structures</td>
</tr>
<tr>
<td></td>
<td>profile catalog.</td>
</tr>
<tr>
<td></td>
<td>Dimensions: Map profiles primarily by comparing the</td>
</tr>
<tr>
<td></td>
<td>object dimensions.</td>
</tr>
<tr>
<td></td>
<td>If the IFC object converter cannot map profiles with the</td>
</tr>
<tr>
<td></td>
<td>method you select as primary, it applies the secondary</td>
</tr>
<tr>
<td></td>
<td>(unselected) method.</td>
</tr>
<tr>
<td>Tolerance</td>
<td>Enter values for dimension comparison. The unit of</td>
</tr>
<tr>
<td></td>
<td>measurement is based on the environment.</td>
</tr>
<tr>
<td></td>
<td>The r value in Tolerance affects only rectangular</td>
</tr>
<tr>
<td></td>
<td>hollow profiles.</td>
</tr>
<tr>
<td></td>
<td>It is used to distinguish hot rolled profiles from cold</td>
</tr>
<tr>
<td></td>
<td>rolled profiles.</td>
</tr>
</tbody>
</table>

3. Copy properties from the IFC object property sets to be used as user-defined attributes of converted Tekla Structures objects:
 a. Click Add to add a row and enter the name of the IFC property in the Property box.
b. Enter the name of the user-defined attribute in the **UDA** box.

The maximum length of the user-defined attribute name is 20 characters. The user-defined attribute that you add here must also be included in the `objects.inp` file. Ensure that the attribute name is unique. Enter the original name of the user-defined attribute, not the translation.

c. Click **Type** to select the format of the attribute.

The possible formats are string, integer or double.

4. Before you convert IFC objects into native Tekla Structures objects, check the profiles and materials to ensure that the conversion will be successful, and map the profiles or material manually in the following way:
 a. Click the **Check** button.

 Tekla Structures displays any missing profiles or materials on the **Missing Profiles** and **Missing Materials** tabs in the **Missing Mapping** dialog box.
 b. Select an appropriate option in the Tekla Structures profile and Tekla Structures material lists to define a mapping for the missing profiles or materials.

 The mapping of profiles works for IFC data that has a profile name but does not include enough information for conversion. You can change your mappings later if needed. The maps are used in conversion only if the profiles are not found from Tekla Structures catalogs. Profile conversion follows a certain logic (page 59).

c. Click **Update Mapping Catalogs and Close**.

You can also open and modify the catalog files in a text editor. To do this, click the **Catalog** button. When you are done, reopen the IFC object conversion settings to take the new settings in use. The files are located in the `\attributes` folder under the model folder:

- **TeklaStructuresCatalogMaterials.txt** contains all materials
- **TeklaStructuresCatalogProfiles.txt** contains all profiles
- **MappedMaterials-default.txt** maps the materials
- **MappedProfiles-default.txt** maps the profiles

5. Click **OK** in the **IFC object conversion settings** dialog box. Now you can convert the IFC objects using one of the two available ways.
8.4 Convert selected IFC objects at one go

You can convert all imported IFC objects at one go using the current object conversion settings. You need to have at least two or more revisions of the same model.

1. Open the Reference Models list by clicking the Reference Models button in the side pane.

2. Click the Add model button, browse for the model in the Add model dialog box, and click Add model again.

3. In the model, select the objects that you want to convert.

4. Go to the ribbon, and on the Manage tab, click Convert IFC objects. The selected objects are converted on the basis of IFC conversion settings. Conversion is done automatically for objects that have not been converted earlier. Converted IFC object are listed in the changes list at the bottom. Each object is on a row of its own, and cuts are listed hierarchically under the related object.

- The status of an object may be New (green) Changed (yellow), Deleted (red), or Up-to-date (white). If there were some problems with conversion, the row color is purple.

- The Conversion status column shows the resulting conversion status.

- The properties of a converted object are listed in the property details list that appears in the side pane when you click an object in the changes list.
5. You can update an object in the list by changing its conversion status to Conversion and clicking Apply changes.

6. If the lists disappear, click the following buttons that are only visible when the conversion changes list is active:
 - The Changes list button brings back the changes list.
 - The Property details button brings back the property details list.

8.5 Convert IFC objects using conversion change management - first conversion

Object conversion change management provides change detection and change management on object level. Conversion change management is needed in the initial data change management to reduce the challenges in construction projects. Objects are not converted automatically but you need to convert the objects using the conversion changes list.

1. Open the Reference Models list by clicking the Reference Models button.

2. Click Add model, browse for the model in the Add model dialog box, and click Add model again.

3. Double-click the model in the Reference Models list to open it, and then click the Start IFC conversion change management button.

The current conversion status is displayed in the changes list and conversion management is activated. The status is based on reference model object physical changes and IFC conversion settings. The properties of a reference object are listed in the property details list that appears separately for each object when you click an object in the changes list.

Use the Select objects in model view and Zoom to selected check boxes to review the model.
The reference object status and conversion status logic and colors:

<table>
<thead>
<tr>
<th>Reference object status</th>
<th>Conversion status</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>No conversion</td>
<td>Green</td>
</tr>
<tr>
<td>Changed</td>
<td>Conversion as item or Conversion as extrusion</td>
<td>Yellow</td>
</tr>
<tr>
<td>Deleted</td>
<td>Conversion as item or Conversion as extrusion</td>
<td>Red</td>
</tr>
<tr>
<td>Up-to-date</td>
<td>Conversion as item or Conversion as extrusion</td>
<td>White</td>
</tr>
</tbody>
</table>

4. Convert objects by selecting the desired object rows, selecting Conversion in the Conversion status column and clicking Apply changes.

 - After conversion, the conversion status is either Conversion as item or Conversion as extrusion depending on the result of the conversion.
 - You can force conversion to be item by selecting Conversion as item.
 - If the conversion fails, the result is written to the Conversion status column, and the row color is purple.
5. If the lists disappear, click the following buttons that are only visible when the conversion management is active:

- The Changes list button brings back the changes list.
- The Property details button brings back the property details list.

For troubleshooting information about IFC object conversion, see support article Troubleshooting "Convert IFC objects..." failures in Tekla User Assistance.

8.6 Convert IFC objects using conversion change management - update conversion

If a previously converted reference object has changed in a newer reference model revision, you can compare the older and newer revisions of the reference model and update the conversion.

1. Open the Reference Models list by clicking the Reference Models button in the side pane.

2. Open the older reference model revision by double-clicking it in the Reference Models list.

3. Update the reference model with a new revision of the reference model by selecting a new revision file in the File list in the Details section and clicking Modify.

4. Click the Start IFC conversion change management button.

5. Go through the changes:
 - Select the Select objects in model view and Zoom to selection check boxes to see the changed objects clearly in the model.
 - Click the changed row to see detailed changes in property details in the side pane.

6. You can update previously converted objects partially by selecting the Update check box next to a certain property in the property details pane. For example, if you only want to update the profile information, only select the Update check box next to the Profile row in the property details pane.

7. To convert all objects with changed conversion status, select all rows, change the Conversion status to Conversion and click Apply changes.
 - The objects that have a changed conversion status are converted on the basis of the current IFC object conversion settings.
• You can update previously converted native model objects based on previous conversion type and settings by selecting Conversion in the Conversion status column. You cannot change the type from extrusion to item, in this case you need to delete the native objects and force conversion.

• If the reference object status is Deleted, select Conversion and click Apply changes. This removes the native object and the link to the removed reference objects.

8.7 IFC export

You can export Tekla Structures models as IFC models.

You can export all basic parts in the Tekla Structures model such as beams, columns, braces, slabs, panels, plates, reinforcing bars, and bolts with nuts and washers.

Tekla Structures exports the model objects on the basis of the export settings you define, including the property sets.

The IFC export functionality in Tekla Structures supports the IFC2X3 schema. The IFC export functionality has the IFC certification granted by buildingSMART international Certified Software.

IFC (.ifc) and ifcXML (.ifcXML) formats are supported. You can use compressed (.ifcZIP) or uncompressed import files.

To	Click the links below to find out more
Define geographic coordinates and default spatial hierarchy for the resulting IFC model before exporting a model | Define the IFC data for the exported model on project level (page 71)
To | Click the links below to find out more
---|---
Check which IFC entities correspond to which Tekla Structures model objects, and define the resulting IFC entities for the exported model objects | Define IFC entities for the exported model objects (page 72)
Define the IFC export settings and export Tekla Structures model or a part of it into a IFC file | Export a Tekla Structures model or selected model objects to an IFC file (page 74)
Test the reference model after creating it | Check the exported IFC model (page 79)
Check what kind of base quantity information is included in the Quantity takeoff add-on view | IFC base quantities in exported IFC model (page 80)
Take a look at the property set configuration files | Property set configuration files in IFC export (page 80)
Create additional property sets out of template attributes and user-defined attributes, define property definitions for the attributes, and bind the property sets to IFC entities to be used in IFC export | Define additional property sets for IFC export (page 77)

Define the IFC data for the exported model on project level
Before you export your model, you can define geographic coordinates and default spatial hierarchy for the resulting IFC model.

To define the IFC data for the exported model on a project level:
1. On the **File** menu, click **Project properties**
2. Click **Edit**.
3. Enter a name for the project.
 - The project name is the IFC project name in the exported IFC model.
4. Click **User-defined attributes**.
5. On the **IFC export** tab, enter values for spatial hierarchy in **IFC site name**, **IFC building name** and **IFC building storey name** as needed.

The spatial hierarchy entered in the project's user-defined attributes is default for model objects in the project. You can enter specific **IFC building name** and **IFC building storey name** values for model objects in the objects' user-defined attributes. You can also take the hierarchy from Organizer.

6. On the **Geo coordinates** tab, enter values for geographic coordinates as needed.

7. Click **Apply**.

8. Click **OK**.

See also

Defining IFC entities for the exported model objects (page 72)

Exporting a Tekla Structures model or selected model objects to an IFC file (page 74)

Define IFC entities for the exported model objects

Before you export Tekla Structures model objects to IFC, you can define the resulting IFC entities for the exported model objects by using user-defined attributes.

1. Double-click an object, for example a column, to open the part properties dialog box, and click the **User-defined attributes** button.

2. On the **Parameters** tab, set **Load bearing** to **Yes**, if you want to define the user-defined attribute **LOAD_BEARING** for the exported object.

 Set this option to **No** for all non-load bearing objects. **Yes** is the default value.

3. On the **IFC export** tab, select an option in the **IFC entity** list to define the IFC entity for the exported model object.
Below is an example list for entities available for a column:

Auto
None
IfcBeam
IfcColumn
IfcWall
IfcBuildingElementPart
IfcSlab
IfcPlate
IfcFooting
IfcPile
IfcRailing
IfcBuildingElementProxy
IfcMember
IfcDiscreteAccessory

4. In the **IFC export type** list, select **Auto** or **Brep**:
 - The **Auto** option will automatically select what kind of Swept Solid IFC object a Tekla object becomes in the IFC.
 - If **Auto** fails for some reason (such as with a deformation), the export reverts to **Brep** automatically, and creates a mesh-based IFC object with less intelligence. These objects are data heavy but still geometrically correct.
 - **Brep** will force the IFC object to be always mesh based.

5. Enter names in the **IFC building name** and **IFC building storey name** boxes to define the spatial hierarchy in the IFC model, if needed.

 The spatial hierarchy entered in the project's user-defined attributes (page 71) is the default export hierarchy for model objects in the project. You can also take the locations from Organizer (page 74).

6. Click **OK** in the user-defined attributes dialog box.

7. Click **OK** in the part properties dialog box.

Tekla Structures model objects and related IFC entities

The following table lists Tekla Structures model objects and the recommended, related IFC entities.

<table>
<thead>
<tr>
<th>Tekla Structures object</th>
<th>IFC entity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
<td>IfcBeam, IfcMember</td>
</tr>
<tr>
<td>Column, Pile</td>
<td>IfcColumn, IfcPile, IfcMember</td>
</tr>
<tr>
<td>Polybeam</td>
<td>IfcBeam, IfcMember</td>
</tr>
<tr>
<td>Curved beam</td>
<td>IfcBeam, IfcMember</td>
</tr>
<tr>
<td>Pad footing, Strip footing</td>
<td>IfcFooting</td>
</tr>
<tr>
<td>Slab</td>
<td>IfcSlab</td>
</tr>
<tr>
<td>Panel</td>
<td>IfcWall or IfcWallStandardCase</td>
</tr>
<tr>
<td>Tekla Structures object</td>
<td>IFC entity</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Contour plate</td>
<td>IfcPlate, IfcDiscreteAccessory</td>
</tr>
<tr>
<td>Bolts, nuts and washers</td>
<td>IfcMechanicalFastener</td>
</tr>
<tr>
<td>Bolt holes</td>
<td>IfcOpeningElement</td>
</tr>
<tr>
<td>Vertical braces</td>
<td>IfcMember</td>
</tr>
<tr>
<td>Railings</td>
<td>IfcRailing</td>
</tr>
<tr>
<td>Assemblies, cast units</td>
<td>IfcElementAssembly, IfcRailing,</td>
</tr>
<tr>
<td></td>
<td>IfcRamp, IfcRoof, IfcStair</td>
</tr>
<tr>
<td>Assembly sub-parts</td>
<td>IfcDiscreteAccessory</td>
</tr>
<tr>
<td>Reinforcements</td>
<td>IfcReinforcingBar</td>
</tr>
<tr>
<td>Pour objects</td>
<td>IfcBuildingElementProxy</td>
</tr>
<tr>
<td>Surface treatment</td>
<td>IfcCovering</td>
</tr>
<tr>
<td>Welds</td>
<td>IfcFastener</td>
</tr>
</tbody>
</table>

NOTE IfcBuildingElementPart entity can also be used. IfcBuildingElement matches beams, columns, etc., but not assemblies.

Polybeams are always exported as B-rep.

See also

Define the IFC data for the exported model on project level (page 71)

Export a Tekla Structures model or selected model objects to an IFC file

You can export Tekla Structures model or a part of the model into a IFC file.

Before you start the export:

- Define the IFC entities (page 72) for the Tekla Structures model objects.
- Ensure that the work plane is in the desired location (page 77). Tekla Structures exports the IFC file using the work plane origin.

To export a model to an IFC file:

1. Select the model objects to export.
 - If you want to export all model objects, you do not have to select anything.
2. On the File menu, click Export --> IFC.
3. Browse for the Output file location and replace the name out with the desired file name.
 - IFC files are by default exported to the \IFC folder under the model folder. The length of the file path is limited to 80 characters. You do not
need to enter the file name extension, it will be automatically added according to the File format.

4. Define the export settings according to your needs:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters tab</td>
<td></td>
</tr>
<tr>
<td>File format</td>
<td>The options are IFC, IFC XML, zipped IFC, and zipped IFC XML.</td>
</tr>
<tr>
<td>Export type</td>
<td>Surface geometry is ideal for design coordination and viewer type of use:</td>
</tr>
<tr>
<td></td>
<td>• Reinforcing bars are exported as B-rep.</td>
</tr>
<tr>
<td></td>
<td>• Export does not support CSG (constructive solid geometry).</td>
</tr>
<tr>
<td></td>
<td>• Curved elements are exported as B-rep.</td>
</tr>
<tr>
<td></td>
<td>• Bolts are exported as B-rep.</td>
</tr>
<tr>
<td></td>
<td>Coordination view 2.0 is recommended for software that has the Coordination view 2.0 import certificate, and when your model contains reinforcement:</td>
</tr>
<tr>
<td></td>
<td>• Reinforcing bars are exported as extrusion.</td>
</tr>
<tr>
<td></td>
<td>• Export supports CSG (constructive solid geometry).</td>
</tr>
<tr>
<td></td>
<td>• Curved elements are exported as RevolvedAreaSolid.</td>
</tr>
<tr>
<td></td>
<td>• Bolts are exported as B-rep.</td>
</tr>
<tr>
<td></td>
<td>Steel fabrication view is recommended for exporting detailed information on steel objects for steel fabrication:</td>
</tr>
<tr>
<td></td>
<td>• Exports assembly presentation and dedicated property sets.</td>
</tr>
<tr>
<td></td>
<td>• Welds are exported as IfcFastener.</td>
</tr>
<tr>
<td></td>
<td>• Finish of the total piece is exported as IfcCovering.</td>
</tr>
<tr>
<td></td>
<td>• Vertical braces are exported as IfcMember.</td>
</tr>
<tr>
<td></td>
<td>• Bolt holes are exported as voids.</td>
</tr>
<tr>
<td></td>
<td>• Steel fabrication model view configuration file for property sets and properties (IfcPropertySetConfigurations_AISC.xml) is included in the installation by default.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Additional property sets</td>
<td>• To define a new property set (page 77), select <code><new></code> and click Edit.</td>
</tr>
<tr>
<td></td>
<td>• To use an additional property set created earlier, select the property set from the Additional property sets list.</td>
</tr>
<tr>
<td>Advanced tab</td>
<td>Object types</td>
</tr>
<tr>
<td></td>
<td>Select the object types to export.</td>
</tr>
<tr>
<td></td>
<td>If you select Pour objects, cast in place concrete parts are exported as pour objects.</td>
</tr>
<tr>
<td></td>
<td>If you select Assemblies, you can exclude single part assemblies by selecting Exclude single part assemblies in the Other area.</td>
</tr>
<tr>
<td>Property sets</td>
<td>The option Base quantities includes in the exported IFC file a Quantity takeoff add-on view containing additional information on the entities in the exported IFC model.</td>
</tr>
<tr>
<td></td>
<td>For more information about the base quantities, see IFC base quantities in exported IFC model (page 80).</td>
</tr>
<tr>
<td></td>
<td>Property sets: Default exports the default set of properties.</td>
</tr>
<tr>
<td></td>
<td>Property sets: Minimum exports the minimum set of properties required by the buildingSMART IFC standard. To view the property sets, click View.</td>
</tr>
<tr>
<td>Other</td>
<td>Layer names as part names uses part names, such as COLUMN and BEAM, as layer names for exported objects.</td>
</tr>
<tr>
<td></td>
<td>Export flat and wide beams as plates exports flat and wide beams as plates. Select this option if you have modeled plates as beams or columns with flat profiles. For example, some system components use beams or columns instead of plates.</td>
</tr>
<tr>
<td></td>
<td>Use current view colors exports the objects using the colors defined in object representation, not the class colors.</td>
</tr>
<tr>
<td></td>
<td>Select Exclude single part assemblies when you export assemblies.</td>
</tr>
<tr>
<td></td>
<td>Locations from Organizer uses the spatial hierarchy created in Organizer in export instead of the IFC export hierarchy in object UDAs or the default hierarchy defined in Project properties.</td>
</tr>
</tbody>
</table>
5. Select either **Selected objects** or **All objects** to define the object selection for the export.

6. Click **Export**.

Change the coordinate system of the exported IFC file

If you want to export the IFC file with another coordinate system than the 0,0,0 in Tekla Structures, you can move the work plane and the IFC file will use that as the 0,0,0 for localization.

1. Set the work plane to the desired location.
2. Export the IFC file.
3. Click **Export anyway** in the warning message box that is displayed.

The exported IFC model now has the origin set according to the work plane. For more information about exporting to project coordinates, see the support article **Export IFC model to project coordinates**.

See also

Export a Tekla Structures model or selected model objects to an IFC file (page 74)

Define additional property sets for IFC export

You can create additional property sets out of template attributes and user-defined attributes, define property definitions for the attributes, and bind the property sets to IFC entities to be used in IFC export. Tekla Structures saves additional property sets in configuration files. You can keep several configuration files in several locations.

To create property sets, property definitions and bindings:

1. On the **File** menu, click **Export --> IFC**.
2. Select **<new>** in the **Additional property sets** list and click **Edit**.
3. In the **Property Set Definitions** dialog box, enter a name for the configuration file in the **Name** box.

4. Enter a name for the property set next to the **New** button and click **New**.
 You can create several property sets in a configuration file.

5. Select an entity type from the **Select entity types** list by selecting its check box.
 The **Select attributes** list shows the attributes that can be used for the selected entity type and added to the current property set.

6. Add the desired attributes by selecting the check boxes next to the attribute names.
 The attribute is added to the **List of all selected properties** list on the right. This list shows which attributes are exported and in which format:
 - You can add new attributes by entering an attribute name in the **Attribute** box in the **Create/Modify property** area and clicking the **Add** button.
 - You can modify and remove attributes on the list by selecting the attributes on the list and clicking **Modify** or **Remove**.

7. In **Create/Modify property**, you can select **Property type** for the selected attribute.
 Select **Template attribute** for user-defined attributes whose name contains more than 19 characters. For example, select **Template attribute** for `ASSEMBLY.USERDEFINED.PLANS_STATUS`.

8. In **Create/Modify property**, you can give a new **Name** for the selected attribute, and select the **Type** of the attribute. The **Type** can be one of the following: **String**, **Boolean**, **Integer**, **Measurement**, **Real**, or **Time stamp**.

9. If the type of the user-defined attribute is **Measurement**, you can select the **Measurement type**: **Length**, **Area**, **Volume**, **Mass**, **Positive length** or **Count**.

10. If the type of the user-defined attribute is **Measurement**, you can also select the **Conversion factor** and **Accuracy**.
 User-definable accuracy allows better IFC file size optimization.

11. Click **Save** to save your modifications.

You can later modify your property set by selecting the property set from the **Additional property sets** list in the **Export to IFC** dialog box and clicking **Edit**.

Example

Below is an example of the contents of the **Property Set Definitions** dialog box.
See also

Property set configuration files in IFC export (page 80)

Check the exported IFC model

We recommend that you test the reference model after creating it.

To check the exported IFC model, insert the model as reference model to the original Tekla Structures model.

Check the following things:

- Check the IFC model visually. Use different colors for the IFC model and the original model. Use clip planes to check the model thoroughly.
- Compare the number of objects. If there are differences, check the export log.
• Check the modeling of unsuccessfully exported objects. For example, unnecessary cuts may result in unsuccessful export. Consider remodeling the incorrect objects or set **IFC export type** to **Brep** for the objects.

TIP You can also use Tekla BIMsight for viewing and checking the IFC model.

See also
- Define IFC entities for the exported model objects (page 72)
- Tekla BIMsight (page 289)

IFC base quantities in exported IFC model
Base quantities are quantity definitions that are independent of a particular method of measurement and therefore internationally applicable. Base quantities are defined as gross and net values and provided by measurement of the correct geometric shape representation of the element. Additional **Quantity takeoff add-on view** is included to the exported IFC model if you set **Base quantities** to **Yes** in the **Tekla Structures IFC Export** dialog box.

The **Quantity takeoff add-on view** contains the following base quantity information on the entities in the exported IFC model:

<table>
<thead>
<tr>
<th></th>
<th>Beam</th>
<th>Column</th>
<th>Slab</th>
<th>Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net area</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Outer surface area</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross footprint area</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Net volume</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Net weight</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

NOTE To include the base quantities in a published Tekla BIMsight model, in **Publish to TeklaBIMsight** dialog box, select the **Base quantities** check box.

Property set configuration files in IFC export
Tekla Structures uses configuration files for defining which user-defined attributes and template attributes are exported as property sets into IFC models. When you export to IFC, you select one predefined configuration file...
as **Export type** that you use as a main property set. In addition, you can define your own property set to add additional information to exported IFC models.

Predefined property set configuration files

The predefined configuration files are read-only and they are located in .. \ProgramData\Tekla Structures\<version>\Environments\Common\inp.

- IfcPropertySetConfigurations_CV2.xml (**Default** property sets)/IfcPropertySetConfigurations_CV2_1.xml (**Minimum** property sets) contains the property sets for **Export type Coordination view 2.0**.
- IfcPropertySetConfigurations_SG.xml (**Default** property sets)/IfcPropertySetConfigurations_CV2_1.xml (**Minimum** property sets) contains the property sets for **Export type Surface geometry**.
- IfcPropertySetConfigurations_AISC.xml (**Default** property sets)/IfcPropertySetConfigurations_AISC_1.xml (**Minimum** property sets) contains the property sets for **Export type Steel fabrication view**.

The IfcPropertySetConfigurations_CV1.xsd file in the same folder is a schema file that describes the structure of the XML file and is used for validation of the XML file. This file is read when the software is started.

Additional property set configuration files

When you configure property sets for IFC export in XML format, you need two files:

- IfcPropertySetConfigurations.xsd is a schema file that describes the structure of the XML file and is used for validation of the XML file. This file is read when the software is started.
- IfcPropertySetConfigurations.xml is the actual property set configuration file.

We recommend you define the additional property sets (page 77) in the **Property Set Definition** dialog to ensure that the XML configuration files are valid. The additional property sets you create are saved to the \AdditionalPSets folder under the model folder by default. You can also read additional property sets from the following folders:

- XS_SYSTEM
- XS_PROJECT
- XS_FIRM

If you use the above mentioned folders, please save the files in a folder called \AdditionalPSets under the system, project or firm folder.
Property set configuration file contents

- A configuration file includes the structure of property sets, and the data definitions for the properties inside the property sets:
 - Template attribute or UDA name. Template attributes are read from `content_attributes_global.lst` and the user-defined attributes from the environment database.
 - Data type, such as String, Integer, Float, Timestamp, Boolean, Logical, or planeanglemeasure.
 - Unit type, such as length, area, volume, or mass.
 - Unit value scaling of unitless UDA values. Conversion factor is added so that unitless values can be converted to correspond to the global units used in the IFC files. Area and volume units need these factors.
 - Possibility to use default values.
 - Possibility to ignore the set to export if template attribute or UDA does not have a value.

- A configuration file includes property set binding rules to IFC entities:
 - Binding to IFC entity type hierarchy including support for not only building elements but also for bolts, reinforcing bars, and assemblies.
 - Possibility to use limiting rules, such as Equal, NotEqual, LessThan, GreaterThan, LessThanOrEqual, and GreaterThanOrEqual for numbers, and Equal and NotEqual for texts.
 You need to modify your additional property set configuration file using a suitable editor, if you want to add these limiting rules.
 - There can be any number of binding rules for any property set, but only one property set definition for each `ReferenceId`.
 - You can bind different property sets to different IFC entity types. For example, a plate may have a different property set than a beam.
 - If no value is found for a property in export, the export does not write the property set at all. To avoid this, add `optional=true` for that property in the property set.

Below is an example of the contents of the `IfcPropertySetConfigurations_CV2.xml` file.
Below is an example of the contents of the IfcPropertySetConfigurations.xml file.
<PropertySetBind referenceId="simpleOptional">
 <Rules>
 <Include subtypes="true" entityType="IfcFooting">
 <Where>
 <!-- Multiple constraints are also possible. Using multiple Include rules allows optional constraint sets -->
 <!-- E.g., Any footing that is not made of concrete and has user defined field 1 set between 2 and 3, OR any footing that field 1 set to 1 and has user defined field 2 set between 0 and 42, except 10. -->
 <Compare comparisonOperator="LessThen" xsl:type="IntegerCompareType">
 <GetVariable xsl:type="TemplateVariableType">
 <TemplateName>USER_FIELD_1</TemplateName>
 <VariableName>UserField1</VariableName>
 </GetVariable>
 <ReferenceValue>4</ReferenceValue>
 </Compare>
 <Compare comparisonOperator="GreaterThen" xsl:type="IntegerCompareType">
 <GetVariable xsl:type="TemplateVariableType">
 <TemplateName>USER_FIELD_1</TemplateName>
 <VariableName>UserField1</VariableName>
 </GetVariable>
 <ReferenceValue>1</ReferenceValue>
 </Compare>
 <Compare comparisonOperator="NotEqual" xsl:type="StringCompareType">
 <GetVariable xsl:type="TemplateVariableType">
 <TemplateName>MATERIAL_TYPE</TemplateName>
 <VariableName>MaterType</VariableName>
 </GetVariable>
 <ReferenceValue>CONCRETE</ReferenceValue>
 </Compare>
 </Where>
 </Include>
 <Include subtypes="true" entityType="IfcFooting">
 <Where>
 <Compare comparisonOperator="Equal" xsl:type="IntegerCompareType">
 <GetVariable xsl:type="UdaVariableType">
 <UdaName>USER_FIELD_1</UdaName>
 </GetVariable>
 <ReferenceValue>1</ReferenceValue>
 </Compare>
 <Compare comparisonOperator="LessThenOrEqual" xsl:type="IntegerCompareType">
 <GetVariable xsl:type="UdaVariableType">
 <UdaName>USER_FIELD_2</UdaName>
 </GetVariable>
 <ReferenceValue>42</ReferenceValue>
 </Compare>
 <Compare comparisonOperator="GreaterThenOrEqual" xsl:type="IntegerCompareType">
 <GetVariable xsl:type="UdaVariableType">
 <UdaName>USER_FIELD_2</UdaName>
 </GetVariable>
 <ReferenceValue>0</ReferenceValue>
 </Compare>
 <Compare comparisonOperator="NotEqual" xsl:type="IntegerCompareType">
 <GetVariable xsl:type="UdaVariableType">
 <UdaName>USER_FIELD_2</UdaName>
 </GetVariable>
 <ReferenceValue>10</ReferenceValue>
 </Compare>
 </Where>
 </Include>
 </Rules>
</PropertySetBind>
Trimble SketchUp is a modeling software used in, for example, architecture, construction, engineering and landscape architecture. 3D Warehouse contains lots of SketchUp models that you can import as reference models to Tekla Structures.

You can import Sketchup files as reference models to Tekla Structures. Tekla Structures supports Sketchup version 2016 and earlier in import.

You can export Tekla Structures models as .skp files to be used in SketchUp.

See also
Import a reference model (page 37)
Export a model to SketchUp (page 85)

9.1 Export a model to SketchUp
You can export a Tekla Structures model to SketchUp in the .skp format.

1. Select the model objects to export.
 If you want to export all, you do not have to select anything. We recommend exporting large models in portions.
3. Browse for the Output file location and enter the file name.
4. On the Advanced tab, select the objects that you want to export.
5. Click Create selected.
 If you want to export everything, click Create all.
DWG is the native file format of AutoCAD and the standard file format for Autodesk products. DWG is used for 2D and 3D CAD data that is supported by Tekla Structures.

DXF (Drawing eXchange Format) was developed by Autodesk for enabling data interoperability between AutoCAD and other programs. As the file format does not contain any form of part ID it is not possible to track changes between different physical objects contained within different versions of a file. Clash checking is not possible with a DXF file in Tekla Structures.

The DWG/DXF files imported with the DWG/DXF tool do not show the surfaces of the imported objects, only the construction lines or lines converted to part profiles that can be used to create a model. If you want to show surfaces of the objects, import DWG and DXF files as reference models (page 37).

In DWG/DXF import, Tekla Structures supports ACAD2012 or earlier.

To determine the AutoCAD version of the DWG file, open the file in a text editor. You will find the version code in the first six bytes:

AC1027 = 2013
AC1014 = 14
AC1012 = 13
AC1009 = 12, 11
AC1006 = 10
AC1004 = 9
AC1002 = 2

Click the links below to find out more:
Import a 2D or 3D DWG or DXF file (page 87)
10.1 Import a 2D or 3D DWG or DXF file

The DWG/DXF import tool imports 2D and 3D models that are in DXF or DWG format. You can import the file as parts or reference lines.

1. On the File menu, click Import --> DWG/DXF.
2. Enter the name of the import file. Click Browse to browse for the file.
3. Enter the offset from X, Y and Z.
4. Enter the scale.
5. Select how to show the imported parts:
 - **Reference lines** displays parts in the model using their reference lines in the original model.
 - **Parts** displays the full profile of parts in the original model, based on the profile sizes defined in the Beam profile and Plate profile boxes. You can only use metric profiles with this option.
6. Select **Use 2D import** to import a two-dimensional representation of the original model.
 This is useful when have selected the Reference line option. Do not select **Use 2D import** if you want to import the model in 3D.
7. Click Import.

Tekla Structures imports the file you specified.

Limitations

When importing DWG profiles, note the following:

- The profile must be the only object in the DWG file. The file should not include any titles, blocks or any other graphics.
- The profile must be a closed POLYLINE.
- Generating the polylines from an ADSK 3D model requires a number of steps to clean the profile.
- The profile needs to be scaled up.
- The DWG/DXF files imported with the DWG/DXF tool do not show the surfaces of the imported objects, only the construction lines or lines converted to part profiles that can be used to create a model. If you want
to show surfaces of the objects, import DWG and DXF files as reference models (page 37).

- The import functionality is not available in all Tekla Structures configurations. For more information, see Tekla Structures configurations.

10.2 Export a model to a 3D DWG or DXF file

You can export models to 3D DWG or 3D DXF file types. By default, Tekla Structures creates a model.dwg file in the current model folder.

You can export parts, items and bolts to 3D DWG/DXF. The export has the following limitations:

- Bolt holes are not exported.
- Curved beams and polybeams are exported as single, continuous beams.
- The number of segments in the curved beams is as defined for the particular curved beam.
- Reinforcing bars are not exported.

1. Open a Tekla Structures model.
2. On the File menu, click Export --> 3D DWG/DXF.
3. In the Export 3D DWG/DXF dialog box, accept the default export file name, or enter another one.
 - To replace an already existing export file, click the ... button and browse for the file.
4. Select whether to export as DWG or DXF.
5. In Export as, select the representation for the exported objects:
 - **Faces** exports parts as faces. Exporting 3D DWG or DXF files as Faces uses more memory and may take longer, but the end result is better.
 - **Lines** exports parts as lines located in the center of the profile cross section. Suits well for exporting to analysis software.
 - **Center lines** exports parts as part center lines.
 - **Reference lines** exports parts as reference lines, drawn between the creation points. Suits well for exporting to analysis software.
 - If the model is large, or you have less memory to use, the Reference lines option is faster, and the resulting file size is smaller.
6. Select the Part accuracy:
 - The options are **High** and Normal. **High** also exports chamfers in profile cross-sections.
7. Select the **Bolt accuracy**:
 - **High** exports entire bolt assemblies, including washers.
 - **Normal** only exports the bolt and nut.
 - **No bolts** exports no bolts.

8. Select whether to include **Cuts** in the export.
 - **Yes** exports cuts.

9. Select whether to include **Inner contours**:
 - **Yes** includes the inner contours.

10. In the **Export** list, select what to export:
 - **All objects** exports the whole model.
 - **Selected objects** exports the parts selected from the model.

11. Click **Create**.

 Tekla Structures creates the export file in the current model folder. The ID of each part is exported as an attribute and written into the export file for each part.

See also

Export a drawing to 2D DWG or DXF (page 89)

10.3 Export a drawing to 2D DWG or DXF

You can export drawings to the 2D DWG or DXF format.

1. On the **Drawings & reports** tab, click **Drawing list**.
2. Select from the list the drawings that you want to export.
3. Right-click and select **Export**.
4. In the **Export Drawings** dialog box, on the **Export file** tab, enter the export file name.

 If you are exporting several drawings, leave the file name box empty.

 The drawings are exported by default to the `\PlotFiles` folder under the current model folder. If you want to use another folder, enter the full path.

 Tekla Structures uses one of the following advanced options to define the names for the export files. The advanced option that is used depends on the drawing type:

 - `XS_DRAWING_PLOT_FILE_NAME_A`
 - `XS_DRAWING_PLOT_FILE_NAME_C`
5. Select the file type: **DXF** or **DWG**.

6. If you want to include a revision mark in the file name, select **Include revision mark to file name**.

7. Set the layer options on the **Layer options** tab:
 - Select the layer rules file.
 To add or modify layers, and to assign object groups to different layers, click **Setup**.
 - If you want to use advanced conversion to convert the type, color and weight of lines and layers, select **Use advanced line type and layer conversion**.
 - In the **Conversion file** box, enter the name of the file to be used in the conversion.
 By default, Tekla Structures uses the **LineTypeMapping.xml** file in the ..\Tekla Structures\<version>\environments\common\inp folder.
 If you need to define your own line type mappings, you can use the file **LineTypeMapping.xml** as a template when you create a conversion file of your own.
 - Select **Include empty layers** if you want to include empty layers in the export.
 - Select **Object color by layer** to have different colors on different layers.

8. Set the other drawing export options on the **Options** tab:
 - Set **Drawing scale** and **Line type scale**.
 - If you want to export the drawings so that the DWG/DXF content is grouped by object, select **Export objects as groups**. When you do this, Tekla Structures makes a new group for each object (part, mark, dimension line, etc.).
 - Select **Cut lines with text** if you do not want to display continuous lines in exported drawings, for example, to run the line through text or drawing marks.
 - Select **Export custom lines as split lines** to ensure that custom line types have the same appearance in the software you are exporting to and when printed. If **Export custom lines as split lines** is selected, custom line types are exported as solid lines that are split to several short lines. If **Export custom lines as split lines** is not selected, custom line types are exported as defined in **TeklaStructures.lin**.

Export a drawing to 2D DWG or DXF
• Select **Use paper space** to export to both model space and paper space. The unscaled contents of the drawing views are exported into model space. The drawing layout is exported into paper space. The layout contains scaled viewports showing appropriate areas of the model space.

When exporting to paper space, ensure that all objects in the view are inside the view frame. Objects that are partially outside the drawing view frame are not exported.

9. Click **Export**.

See also

- Default line types in drawings (page 98)
- Define customized line type mappings in drawing export (page 95)
- Example: Set up layers and export to DWG (page 99)
- Layers in exported DWG/DXF drawings (page 91)
- Create layers in DWG/DXF files for drawing export (page 92)
- Assign objects to layers in drawing export (page 92)
- Copying export layer settings to another project (page 95)

Layers in exported DWG/DXF drawings

In drawing DWG/DXF export, you can define the layers to which different drawing objects belong. The benefit of using layers in export is that if you do not want to show a certain layer in the drawing, you can turn it off.

You can define the different layers using Tekla Structures selection filters. You can use the LineTypeMapping.xml file to define the line type, line weight and line color for objects on different layers. You can also add custom line types in the TeklaStructures.lin file and use these when mapping Tekla Structures line types to the line types in the exported DWG and DXF files.

You can export into layers of their own all object types that are listed in the **Drawing Export Layers** dialog box.

The following objects cannot have layers in export because they cannot be identified as separate objects that can have selection filters: clouds, hatches, neighbor parts, symbols in drawings, section view titles, grid label texts, dimension labels, weld labels, bolt mark leader lines, and part mark leader lines. For example, hatches are exported to the same layer with the part that the hatch belongs to.

See also

- Example: Set up layers and export to DWG (page 99)
Create layers in DWG/DXF files for drawing export

You need to define the layers that are included in the exported DWG and DXF files.

NOTE To keep track on the layers that you have, create all the layers that you need for the final DWG/DXF drawings at the same time.

1. On the **File** menu, click **Export --> Drawings**.
2. In the **Export Drawings** dialog box, go to the **Layer options** tab and click **Setup** next to the **Layer rules** box.
3. In the **Drawing Export Layers** dialog box, click **Modify layers**.
4. To add a layer, click **Add**. You can add as many layers as you need.
5. Click the row of the new layer in the **Name** column and enter a name for the layer.
6. Click the row of the new layer in the **Color** column and select a color for the new layer.
7. Click **OK**.

Next you can assign objects to the new layer.

See also

Assign objects to layers in drawing export (page 92)
Example: Set up layers and export to DWG (page 99)

Assign objects to layers in drawing export

You need to define which objects to export to certain layers in the exported DWG/DXF file. You can do this by using a selection filter for identifying the desired objects among all objects, and by creating a rule to export these objects to a certain layer.

Before creating the rule, first create the selection filter.

1. Create a selection filter.
2. On the **File menu**, click **Export --> Drawings**.

3. In the **Export Drawings** dialog box, go to the **Layer options** tab, and click **Setup**.

4. Open an object group by clicking the plus sign next to the group name. For example, click the plus sign next to **Model Object**.

5. Right-click a rule in the list and select **Add Next Level Rule**. For example, right-click **Part**.

6. Enter a name for the rule and select the selection filter that you created.

7. Click **OK**.

8. Double-click the row under the rule you just created and select the desired layer for it in the **Select Layer** dialog box.

9. Click **OK**.

 Tekla Structures maps the selected layer to the rule.

10. Save the created layer rule settings for later use by entering a name next to the **Save as** button and clicking **Save as**.
NOTE The order of rules is important. Organize the rules by right-clicking the rule, and selecting Move up or Move down. The objects are exported to the first matching layer. If there is no matching layer, the objects are exported as Other object type.

Example: Create a rule for exporting beam marks to their own layer in drawing export
You can export all kinds of drawing objects to layers of their own.

This example shows how you can do that for beam marks. All kinds of marks can be exported separately to their own layers: bolt marks, part marks, connection marks, neighbor part marks, reinforcement marks and component marks.

First you need to create a selection filter selecting the beams and then you can define the layer rule. Name the beam selection filter Beams.

1. On the File menu, click Export --> Drawings.
2. Go to the Layer options tab of the Export Drawings dialog box and click Setup next to the Layer rules box.
3. Under Mark in the Drawing Export Layers dialog box, select the layer rule of the mark you want to define to its own layer (part, bolt, connection, neighbor part, or reinforcement mark).
 Select Part mark.
4. Right-click Part mark and select Add Next Level Rule from the pop-up menu.
 This opens the Layer manager rules dialog box.
5. Enter a rule name (for example, BeamMark) and select a filter that you have created (Beam).
6. Click OK.

Tekla Structures creates a new rule BeamMark. Now you can connect the new rule to a layer you have created for beam marks and use when exporting drawings.

DWG and DXF 94 Export a drawing to 2D DWG or DXF
Copying export layer settings to another project
If you want your layer settings to also be available in other projects, you can copy them to a firm or project folder.
1. On the File menu, click Export --> Drawings.
2. Go to the Layer options tab and click Setup.
3. Define the required rule and layer settings.
4. Enter a name for the layer rule settings file next to the Save as button and click Save as.
5. Copy the file <your_layer_rule>.ldb from the \attributes folder under the current model folder to the firm or project folder.

Define customized line type mappings in drawing export
You can use advanced conversion to convert the type, color and weight of lines and layers. This way you will get the line types that you want to use in the target software, for example, AutoCAD.

By default, Tekla Structures uses the file LineTypeMapping.xml in the folder ..\Tekla Structures\<version>\environments\common\inp for the conversion.

If you need to define your own line type mappings, you can use the file LineTypeMapping.xml as a template.

NOTE When modifying the line type mappings file, use an editor that is capable of validating XML in order to maintain a valid document structure.

To define your own line type mappings, do one of the following:

<table>
<thead>
<tr>
<th>To</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map according to line types only</td>
<td>1. Open the mapping file in an XML editor.</td>
</tr>
<tr>
<td>To</td>
<td>Do this</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 2. | Enter only the line type information.
For example, all lines in all layers with line type **XKITLINE01** will be exported to **DASHED**. |
| 3. | Save the mapping file to the model folder. |

Map according to line types and layers

<table>
<thead>
<tr>
<th>To</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Open the mapping file in an XML editor.</td>
</tr>
</tbody>
</table>
| 2. | Enter the line type and layer name.
Define the layers that the mapping will apply to in the **LayerName** attribute.
If you leave out the attribute **LayerName**, Tekla Structures uses the line type mapping for any layer. If you include the attribute **LayerName**, Tekla Structures uses the line type mapping for that layer only.
For example, all lines on the layer **BEAM** with line type **XKITLINE01** will be exported to **DASHED**. Tekla Structures first searches for these kinds of mappings by default. |
| 3. | Define the color of the line in the **Color** attribute. Enter the color values in AutoCAD Color Index (ACI) codes (numbers from 0 to 255). |
| 4. | Define the thickness of the line in the **Weight** attribute. Enter the values in hundredths of millimeters. |
| 5. | Save the mapping file to the model folder. |
This is how the file LineTypeMapping.xml is composed:

```xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!DOCTYPE Mapper []>
<!ELEMENT Mapper (Mapping*)>
<!ATTLIST Mapper Version CDATA #REQUIRED>

<!ELEMENT Mapping (From, To)> 
<!ATTLIST Mapping LayerName CDATA #IMPLIED>
<!ATTLIST Mapping LineType CDATA #REQUIRED>
<!ATTLIST From EMPTY> 
<!ATTLIST From LayerName CDATA #IMPLIED>
<!ATTLIST From LineType CDATA #REQUIRED>
<!ATTLIST To EMPTY> 
<!ATTLIST To LayerName CDATA #IMPLIED>
<!ATTLIST To Color CDATA #IMPLIED> 
<!ATTLIST To Weight CDATA #IMPLIED>

<Mapping Version="1.1">
  <Mapping LayerName="Part"> 
    <From LineType="XLTILINED0"/>
    <To LineType="BYLAYER" Color="4" Weight="100"/>
  </Mapping>
  <Mapping LayerName="Part"> 
    <From LineType="XLTILINED2"/>
    <To LineType="HIDDEN" LayerName="Part_Hidden" Color="8" Weight="100"/>
  </Mapping>
  <Mapping LayerName="Part"> 
    <From LineType="XLTILINED2"/>
    <To LineType="DASHED" LayerName="Part_Dashed" Color="12" Weight="100"/>
  </Mapping>
  <Mapping> 
    <From LineType="XLTILINED0"/>
    <To LineType="continuous"/>
  </Mapping>
  <Mapping> 
    <From LineType="XLTILINED1"/>
    <To LineType="DASHED"/>
  </Mapping>
  <Mapping> 
    <From LineType="XLTILINED2"/>
    <To LineType="DASHEDX2"/>
  </Mapping>
  <Mapping> 
    <From LineType="XLTILINED3"/>
    <To LineType="DASHEDX3"/>
  </Mapping>
  <Mapping> 
    <From LineType="XLTILINED4"/>
    <To LineType="DASHEDX4"/>
  </Mapping>
  <Mapping> 
    <From LineType="XLTILINED5"/>
    <To LineType="DIVIDE"/>
  </Mapping>
  <Mapping> 
    <From LineType="XLTILINED6"/>
    <To LineType="CENTER"/>
  </Mapping>
</Mapper>
```

1. The first section consists of XML and document type definition. Do not change or remove this section.

2. The mappings that are available are defined here. You can use these mappings as a template for your own mappings.
Examples

In the first example, a new Mapping element is added, where XKITLINE00 lines in the Beam layer are converted to BORDER line type, color is converted to 10 and weight to 1.00 mm:

```xml
<Mapping LayerName="Beam">
  <From LineType="XKITLINE00"/>
  <To LineType="BORDER" Color="10" weight="100" />
</Mapping>
```

In the second example, a new Mapping element is added, where XKITLINE02 lines in the Part layer are converted to HIDDEN2 line type, the layer name is converted to Part_Hidden, the color is converted to 8 and weight to 1.00 mm.

You can use the LineTypeMapping.xml file for exporting hidden lines to separate layers. The hidden lines must then be defined to their own layers (here Part_Hidden).

```xml
<Mapping LayerName="Part">
  <From LineType="XKITLINE02"/>
  <To LineType="HIDDEN2" LayerName="Part_Hidden" Color="8" Weight="100"/>
</Mapping>
```

NOTE For the export to succeed, ensure that the layer (here Part_Hidden) exists on the list of available layers in the Modify Layers dialog box.

See also

Default line types in drawings (page 98)

Default line types in drawings

Default line types are available in Tekla Structures drawings. You can map default line types to customized line types, which are defined in TeklaStructures.lin and further exported to DWG/DXF files.

The table below lists the default line types and shows what they look like.

<table>
<thead>
<tr>
<th>Line type name</th>
<th>Line type appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>XKITLINE00</td>
<td>_____</td>
</tr>
<tr>
<td>XKITLINE01</td>
<td>-----</td>
</tr>
<tr>
<td>XKITLINE02</td>
<td>- - -</td>
</tr>
<tr>
<td>XKITLINE03</td>
<td>-----</td>
</tr>
<tr>
<td>XKITLINE04</td>
<td>........</td>
</tr>
<tr>
<td>XKITLINE05</td>
<td>-----</td>
</tr>
<tr>
<td>XKITLINE06</td>
<td>-----</td>
</tr>
</tbody>
</table>

DWG and DXF 98 Export a drawing to 2D DWG or DXF
Example: Set up layers and export to DWG
This example shows how to define layers and export line types on a certain layer to their own sublayers in DWG export. The workflow consists of six tasks:

1. Example: Create a selection filter for DWG export (page 99)
2. Example: Create layers for DWG export (page 100)
3. Example: Create a rule for drawing DWG export and assign a layer to the rule (page 100)
4. Example: Define a custom line type for DWG export (page 101)
5. Example: Define line types and weights for layers in DWG export (page 102)
6. Example: Export the drawing to DWG (page 103)

Example: Create a selection filter for DWG export
Start by creating a selection filter. This task is phase 1 in the workflow Example: Set up layers and export to DWG (page 99).

To create a selection filter:

1. In the model, click the Selection filter switch.
2. In the Object Group - Selection Filter dialog box, click New filter.
3. Add new filter rules.
 a. Create a filter rule that select parts according to the name BEAM.
 b. Create a filter rule that selects parts according to the material S (as in steel).
4. Save the filter as steel-beam.
Example: Create layers for DWG export

After creating a selection filter, you can continue by creating layers that you want to have in the exported DWG. This task is phase 2 in the workflow Example: Set up layers and export to DWG (page 99).

To create the layers you want to have in the exported DWG:

1. On the File menu, click Export --> Drawings.
2. Go to the Layer options tab.
3. Click Setup and then click Modify layers.
4. Click Add to add a new layer.
 Create separate layers for solid lines (steel-beam-layer) and hidden lines (steel-beam-layer-H) within steel beams.
5. Set the color for the layers.
 Set the solid lines to red and hidden lines to blue.

6. Click OK to accept the changes.
Example: Create a rule for drawing DWG export and assign a layer to the rule

After creating layers, you can continue by creating a rule to export an object group into a layer, and assign the layer to the created rule. This task is phase 3 in the workflow Example: Set up layers and export to DWG (page 99).

To create a rule to export an object group into a layer, and assign the layer to the created rule:

1. Right-click a model object part rule and select **Add Next Level Rule**.
2. Enter a name for the rule (**steel-beam-rule**) and select the selection filter you created for steel beams (**steel-beam**).
3. Click **OK**.
4. To assign a layer to a rule, double-click the row under the **steel-beam-rule** and select a layer, in this case **steel-beam-layer**.
5. Click **OK**.
6. Save the layer rule settings with the name **example1** using **Save as**.
7. Close the dialog box by clicking **OK**.
Example: Define a custom line type for DWG export

After creating a rule, you can continue by defining a custom line type for continuous lines in the exported DWG. In this example, you will add some line type definitions. This is phase 4 in the workflow **Example: Set up layers and export to DWG** (page 99).

To define a custom line type:

1. **Open the TeklaStructures.lin file in a text editor (..\ProgramData\Tekla Structures\<version>\environments\common\inp).**
2. Add the following line type definition in the file:

   ```
   *HIDDEN,Hidden
   A, 1.5875, -0.79375
   *HIDDEN2,Hidden (.5x)
   A, 0.79375, -0.396875
   *HIDDENX2,Hidden (2x)
   A, 3.175, -1.5875
   *PHANTOM,Phantom
   A, 7.9375, -1.5875, 1.5875, -1.5875, 1.5875, -1.5875
   *PHANTOM2,Phantom (.5x)
   A, 3.96875, -0.79375, 0.79375, -0.79375, 0.79375, -0.79375
   *PHANTOMX2,Phantom (2x)
   A, 15.875, -3.175, 3.175, -3.175, 3.175, -3.175
   *CONTINUOUS,Continuous
   A, 3]
   ```
3. **Save the file. Ensure that the file name extension does not change.**

Example: Define line types and weights for layers in DWG export

After defining a custom line type, you can continue by modifying the LineTypeMapping.xml file and defining the line types and weights. This task is phase 5 in the workflow **Example: Set up layers and export to DWG** (page 99).

To define the line types and weights:

1. **Open the LineTypeMapping.xml file (..\ProgramData\Tekla Structures\<version>\environments\common\inp) in a text editor.**
2. Add the line type mappings for the layers as shown inside the lower blue frame in the image below. Do not touch the lines inside the upper red frame.
3. **Save the file. Ensure that the file name extension does not change.**
1. The lines are on the steel-beam-layer layer.
2. The lines are drawn with XKITLINE00 (solid lines).
3. The lines are exported to CONTINUOUS lines in DWG. The line color in DWG was already defined in the layer properties (red). The line weight in DWG is 35.
4. The lines are on the steel-beam-layer layer.
5. The lines are drawn with XKITLINE02 (hidden lines).
6. The lines are exported to DASHED lines into a separate layer called steel-beam-layer-H in DWG. The line color in DWG was already defined in the layer properties (blue). The line weight in DWG is 35.
Example: Export the drawing to DWG

After you have defined all the layer settings, you can continue by exporting the drawing. Before exporting the drawing to DWG, ensure that all the drawing properties are as you wish. This task is phase 6 in the workflow Example: Set up layers and export to DWG (page 99).

To export the drawing:
1. Open the drawing that you want to export.
2. On the File menu, click Export drawings.
3. Enter a name for the export file.
4. Set the Type to DWG.
5. Go to the Layer options tab page and load the layer rule settings that you saved earlier with the name example1.
6. Select the following check boxes: Use advanced line type and layer conversion, Include empty layers and Object color by layer.
8. Go to the Options tab, set the scale for the export and select the Export objects as groups check box and, if you want to, Cut lines with text and Export custom lines as split lines.
9. Click Export.

Open the exported DWG with an applicable DWG viewer software. You can see that the solid lines of the steel beam are on one layer and the hidden lines are
on another layer. You can also see that columns do not match with the layer rules you defined, so they are handled according to other rules.

See below for examples on how the selecting and not selecting **Cut lines with text** affects the result.

In the following example, **Cut lines with text** is selected.

In the following example, **Cut lines with text** is not selected.
Export a drawing to 2D DWG or DXF
The DGN format has been used especially for data transfer between plant design programs. It was developed by MicroStation. It is similar to DWG in that it is only a graphical data format. It contains unique part IDs in the given model. It is possible to check for clashes between the Tekla Structures model and a DGN reference model.

This format has the following limitations:

- GUID is not supported
- Change management is not possible with a DGN file.

See also
Reference models (page 36)
Import a reference model (page 37)
Export to 3D DGN files (page 110)

11.1 DGN import

You can import DGN models as reference models to Tekla Structures. You can view DGN model objects on different reference model layers according to the level settings in the DGN file. You can use DGN models for clash checking. Tekla Structures reference model import supports V7 and V8 DGN formats.

A DGN file may contain one or more DGN models. A DGN model can be one of the following three types: a design model, an extrusion model or a sheet model. Design models are most useful in Tekla Structures as they contain appropriate structural data. If there are many model types available in a DGN file, Tekla Structures selects the imported model type in the following order:

1. Active model is imported if it is a design model.
2. Default model is imported if it is a design model.
3. If DGN file contains design models, the first one is imported.
4. If there are no design models in the DGN file, the first model regardless of the model type is imported.

You can view a DGN import log about DGN import on the Log file tab in Message Panel. To open the Message Panel, go to Quick Launch and type Message Panel and select the Message Panel command from the displayed list.

See also
Import a reference model (page 37)
DGN objects supported in reference models (page 108)

11.2 DGN objects supported in reference models

Tekla Structures can display the following DGN objects in reference models:

<table>
<thead>
<tr>
<th>Object</th>
<th>Type no.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell</td>
<td>2</td>
<td>A collection of grouped entities with a common insertion point/origin, scale and orientation in 2D/3D space.</td>
</tr>
<tr>
<td>Line</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Line string</td>
<td>4</td>
<td>A series of interconnected lines.</td>
</tr>
<tr>
<td>Shape</td>
<td>6</td>
<td>Like a line string, but closed (first point = last point).</td>
</tr>
<tr>
<td>Text node</td>
<td>7</td>
<td>A multi-line paragraph/block of text.</td>
</tr>
<tr>
<td>Curve</td>
<td>11</td>
<td>A parametric spline curve.</td>
</tr>
<tr>
<td>Complex chain</td>
<td>12</td>
<td>A chained collection of other entities (lines, line strings, arcs, curves or b-spline curves).</td>
</tr>
<tr>
<td>Complex shape</td>
<td>14</td>
<td>Like a complex chain, but closed (first point = last point).</td>
</tr>
<tr>
<td>Ellipse</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Arc</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>17</td>
<td>Supports TrueType fonts and text styles (bold, underline, italic, etc).</td>
</tr>
<tr>
<td>3D surface</td>
<td>18</td>
<td>Like a 3D solid, but not capped on the ends.</td>
</tr>
<tr>
<td>3D solid</td>
<td>19</td>
<td>The solid created by projecting or rotating from a boundary entity</td>
</tr>
<tr>
<td>Object</td>
<td>Type no.</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Cone</td>
<td>23</td>
<td>Actually a truncated cone described by two parallel circles; if the radius of both circles is the same, a cylinder is produced.</td>
</tr>
<tr>
<td>B-spline surface</td>
<td>24</td>
<td>See description of b-spline curves, which also applies here; additional data is provided by surface boundary entities (type 25).</td>
</tr>
<tr>
<td>B-spline curve</td>
<td>27</td>
<td>Can be rational/non-rational, uniform/non-uniform, open/closed; entity type 27 supplies header data and additional data is provided by pole entities (type 21), knot entities (type 26) and weight factor entities (type 28).</td>
</tr>
<tr>
<td>Shared cell definition</td>
<td>34</td>
<td>Similar to a DWG block definition; basically defines a set of grouped entities.</td>
</tr>
<tr>
<td>Shared cell instance</td>
<td>35</td>
<td>Similar to a DWG block instance; given a particular cell 'definition', numerous cell 'instances' can be created at differing locations, scales and orientations.</td>
</tr>
<tr>
<td>Multiline</td>
<td>36</td>
<td>A set of parallel lines, which can be jointed (with or without visible seams at the joints), and have various types of end caps (rounded, square, etc).</td>
</tr>
<tr>
<td>Mesh</td>
<td>105</td>
<td>Supports indexed face loops, quad list, quad grid, triangle grid and triangle list meshes.</td>
</tr>
<tr>
<td>Smart solid</td>
<td>-</td>
<td>Smart solids (solids created from embedded Parasolid/ACIS data) can be imported into Tekla Structures as wireframe outlines.</td>
</tr>
</tbody>
</table>

Limitations

The following objects have specific limitations:

- DGN 109 DGN objects supported in reference models
Object Types

<table>
<thead>
<tr>
<th>Object</th>
<th>Type no.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point string</td>
<td>22</td>
<td>Not supported. (A point string is a series of points with associated orientations; point strings are typically used for defining walkthrough paths).</td>
</tr>
<tr>
<td>Dimension</td>
<td>33</td>
<td>Not supported.</td>
</tr>
<tr>
<td>Mesh</td>
<td>105</td>
<td>The point cloud mesh type is not currently supported.</td>
</tr>
<tr>
<td>Smart solid</td>
<td>-</td>
<td>Smart solids (solids created from embedded Parasolid/ACIS data) are currently supported as wireframe outlines only; for this reason, smart solids do not currently participate in clash checking operations.</td>
</tr>
</tbody>
</table>

See also
- Import a reference model (page 37)
- DGN import (page 107)

11.3 Export to 3D DGN files

You can export selected parts or the whole model to 3D DGN.

1. Open a Tekla Structures model.
2. On the **File** menu, click **Export --> 3D DGN**.
 - The **Export 3D DGN** dialog box opens.
3. In the **Output file** box, enter the name of the export file.
 - If you want to replace an already existing file, click the **...** button and browse for the file.
4. In the **Export** list, select **All objects**, or **Selected objects** and select the parts to export.
5. Click **Create**.

 Tekla Structures creates the `<name>.dgn` file in the current model folder.

 If you have tubular parts in your model and you want to reduce the size of the DGN files or the complex display in the rendered views, you can use the following advanced options to control this:

 XS_CHORD_TOLERANCE_FOR_SMALL_TUBE_SEGMENTS
 XS_CHORD_TOLERANCE_FOR_TUBE_SEGMENTS

 You can also use the following advanced options to control DGN exports:

 XS_EXPORT_DGN_COORDINATE_SCALE
 XS_EXPORT_DGN_FILENAME
 XS_EXPORT_DGN_INCLUDE_CUTS
 XS_EXPORT_DGN_INCLUDE_INNER_CONTOUR
 XS_EXPORT_DGN_USE_CLASS_AS_COLOR
You can import LandXML reference models to Tekla Structures. The supported contents of LandXML files are terrain models, line alignments of roads and railways, and rain water systems.

You can export files in .xml format from applications like Bentley InRoads, Autodesk Civil, and Trimble Business Center, and import the .xml files in Tekla Structures as reference models. The LandXML format extends the capabilities of Tekla Structures to show merged models, including the infra models. Tekla Structures supports LandXML 1.2 schema and single-precision floating-point format.

A typical example of a building structure where LandXML can be used is the surface of the bedrock to be utilized when pile lengths are to be considered. LandXML can also be used when estimating the need of excavation. The LandXML format is important also for bridge and for civil structures design tasks.

An example of an imported LandXML reference model:

An example of layers in a LandXML reference model:
Limitations

The LandXML feature does not support all the possible data in the format. It supports the subset of the primitives defined in LandXML 1.2 schema, such as alignments, terrain models and pipe networks.

- Surfaces are not shown correctly in drawings.
- Triangle type of surfaces are only supported.
- There is no warning if the LandXML file contains unsupported data.

See also

Import a reference model (page 37)
You can import a PDF as a reference model to your model. During import, Tekla Structures converts the PDF into the DXF format. Only vector graphics are converted.

See also
Import a PDF to a model (page 114)

13.1 Import a PDF to a model

2. Click Browse.
3. Browse for the PDF and click Open.
4. Set the scale for the reference model.
5. Enter the page number that you want to import.
6. Click OK.
7. Pick a point to place the reference model.

Tekla Structures converts the PDF into the DXF format. The conversion creates a DXF file for every imported page. Tekla Structures saves the DXF files to the same folder where the PDF is.

Limitations

Only vector graphics are converted, not raster graphics.
Computer-aided design (CAD) means that you can create, modify, analyze, and optimize a design using software. CAD software applications are available for generic design or specialized use, such as for architectural or plant design. More complex forms of CAD are solid modeling and parametric modeling, which allow objects to be created with real-world characteristics. In parametric modeling, objects have meaningful relationships with each other.

In Tekla Structures, the CAD import tool supports several different formats to import models, and is able to import a maximum of 10,000 parts. If the number of parts exceeds this, Tekla Structures displays a warning message, and does not import the model.

See also

Conversion files (page 31)
CAD model import settings (page 121)
CAD model export settings (page 128)

14.1 CAD import and export formats

You can import to and export from Tekla Structures the following file types using the CAD import tool.

<table>
<thead>
<tr>
<th>Option</th>
<th>Import</th>
<th>Export</th>
<th>Imports from/Exports to</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDNF</td>
<td>x</td>
<td>x</td>
<td>SDNF (Steel Detailing Neutral File) is used in importing to and exporting from several different CAD systems.</td>
</tr>
<tr>
<td>HLI</td>
<td>x</td>
<td>x</td>
<td>HLI (High Level Interface). IEZ AG Speedikon software</td>
</tr>
<tr>
<td>Plantview</td>
<td>x</td>
<td></td>
<td>Plantview design system</td>
</tr>
<tr>
<td>Option</td>
<td>Import</td>
<td>Export</td>
<td>Imports from/Exports to</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>SDNF (PDMS)</td>
<td>x</td>
<td>x</td>
<td>Plant Design Management System. Aveva 3D plant design software. Data is exported to PDMS via SDNF link. Tekla Structures writes the information of finish field in the member class attribute, whereas in SDNF export it omits the class information.</td>
</tr>
<tr>
<td>XML</td>
<td>x</td>
<td>x</td>
<td>ArchiCAD modeling system. There are some limitations in the export:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Conversion files are not used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Holes, bolts and welds are not exported.</td>
</tr>
<tr>
<td>PDMS</td>
<td></td>
<td>x</td>
<td>Outdated format. We do not recommend using this option.</td>
</tr>
<tr>
<td>SCIA</td>
<td></td>
<td>x</td>
<td>SCIA is used for SteelFab interface.</td>
</tr>
</tbody>
</table>

14.2 Import an SDNF model

1. On the **File** menu, click **Import --> CAD**.

 The **Import Models** dialog box opens.
2. Select **Import CAD** from the **Type** list.
3. Use the default name **import model** or enter a new name.
4. Click **OK**.
5. Select the model from the list.
6. Click **Properties** to open a dialog box where you can define the settings for the import file:
 - You can load the standard parameters for PDS and PDMS SDNF files with the **Load** option.
 - On the **Conversion** tab, enter the conversion file names or browse for the conversion files.
- On the **Parameters** tab, enter the name of the SDNF file you want to import in the **Input file** box, or use the default name. SDNF files normally have a *.dat extension. The version number for SDNF 3.0 files can be found in the header if you open the file with a text editor.

- On the **Parameters** tab, set the file **Type** to **SDNF**, and set the origin coordinates in the **Origin** boxes if you want the file in a specific location.

- Set the SDNF options on the **SDNF** page:
 - In the **Part Pos_No** area enter a prefix and a start position number. This relates to the **Position number type** setting.
 - In **SDNF version number**, select the SDNF format type (2.0 or 3.0). SDNF 3.0 is generally the format to select. However, with StruCAD it is better to share SDNF 2.0 files.
 - Set **Apply cuts and fittings** to **Yes** (default) to apply cuts and fittings in the import. These will only be included if contained within the SDNF file.
 - Set **Consider offsets** to **Yes** to create offsets. In most cases you should select **Yes**. **No** (default) positions part creation points at part end points.
 - You can create a log file. If the import fails, examine the log file to find out why. Check the log file even if the import seems to have succeeded. In the **Create log** file, you can select **Create** to write a new log file, and delete the previous log file, each time you import the model. If you select **Append** (default), the log file information is added at the end of the existing log file.
 - You can also select how the log file is displayed, the options being **With an external viewer** (like Microsoft Notepad), **Not viewed**, and **In a dialog box**, which creates a separate list dialog box in which the file can only be viewed.
 - Enter the log file name or browse for an existing log file.
 - The SDNF file contains identifiers that can be included in a part's user-defined attributes, or used as position numbers. In **Position number type**, select **Part position** if you want the identifier to become the part's position number. Do not use the **Part Pos_No** fields with this option. Select **Universal ID** if you want the identifier to become a user-defined attribute for the part. In most cases, you would select **Universal ID**. To make user-defined attributes visible, you need to add them to the objects.inp file. For file imports from PDS or PDMS then the Universal ID option is the normal case.

- If you wish to create a report of the import, enter the required information on the **Report** tab.
On the **Advanced** tab, you can set some advanced options. Usually there is no need to change the defaults.

7. Click **OK** to go to the **Import Model** dialog box.
8. Select the import model name from the list and click **Import**.

 You can also click the **New** or **Properties** buttons if you require to make some changes.

 Tekla Structures displays the **Import model info** dialog box.
9. Select which version of parts to import.
10. Click **Accept all**.

 The **Accept all** option is generally used if importing a new model over an existing one. If you have changed the model and want to re-import it, you can also reject all changes by clicking **Reject all**, or accept or reject individual changes by clicking **Select individual**.

11. Tekla Structures displays the message **Do you want to save the import model for subsequent imports?** Click **Yes**.

 Tekla Structures displays the import model in a model view.

12. Right-click the model view and select **Fit work area to entire model** to ensure that the imported model is completely visible.

13. If parts are missing, check the **View depth Up** and **Down** values in the **View Properties** dialog box and change them if necessary.
NOTE If you want to import information, which Tekla Structures parts do not have, you can use the SDNF extension line in the SDNF file to be imported, and the REVISION_NUMBER user-defined attribute in Tekla Structures.

See also
CAD model import settings (page 121)

14.3 Import a Plantview model

1. On the File menu, click Import --> CAD.
 The New Import Model dialog box opens.
2. Select Import CAD.
3. Use the default name import model or enter a new name.
4. Click OK.
5. Select the model from the list.
6. Click Properties to open a dialog box where you can define the settings for the import file type you selected:
 • On the Conversion tab, enter the conversion file names or browse for the conversion files.
 • On the Parameters tab, enter the name of the Plantview file you want to import in the Input file box, or use Browse to locate the file.
 • Set the file type to Plantview in the Type box, and set the origin coordinates in the Origin boxes if you want the file in a specific location.
 • Set the material grade in the Material box on the SDNF tab.
 You can also click ... next to the box, and browse for the material grade in the Select Material dialog box.
 • If you wish to create a report of the import, enter the required information on the Report tab.
 • If you are importing the model for the first time, you do not need to change the default values on the Advanced tab.
7. Click OK to go to the Import Model dialog box.
8. Click Import.
 Tekla Structures displays the Import model info dialog box.
9. Select which version of parts to import.
10. Click **Accept all**.

 If you have changed the model and want to re-import it, you can also reject all changes by clicking **Reject all**, or accept or reject individual changes by clicking **Select individual**.

11. Tekla Structures displays the message **Do you want to save the import model for subsequent imports? Click Yes**.

 Tekla Structures displays the imported model in a model view.

12. Right-click the model view and select **Fit work area to entire model** to ensure that the imported model is completely visible.

13. If parts are missing, check the **View depth Up** and **Down** values in the **View Properties** dialog box and change them if necessary.

See also

CAD model import settings (page 121)

14.4 Import a SteelFab/SCIA model

1. On the **File** menu, click **Import --> CAD**.

 The **Import Models** dialog box opens.

2. Select **Import Steelfab/SCIA** from the **Type** list.

3. Use the default name **import model** or enter a new name.

4. Click **OK**.

5. Select the model from the list.

6. Click **Properties** to open a dialog box where you can define the settings for the import file:

 - Enter the input file name.
 - Enter the conversion file names.
 - Set the origin coordinates in the **Origin** boxes if you want the file in a specific location
 - Set **Import weldings** to **Yes** to include welds in the model.
 - Set **Import holes** to **Yes** to include holes in the model.

7. Click **OK**.

8. Click **Import**.

9. Select which version of parts to import.

10. Click **Accept all**.
11. If you have changed the model and want to re-import it, you can also reject all changes by clicking **Reject all**, or accept or reject individual changes by clicking **Select individual**.

12. Tekla Structures displays the message **Do you want to save the import model for subsequent imports?** Click **Yes**. Tekla Structures displays the import model in a model view.

13. Right-click the model view and select **Fit work area to entire model** to ensure that the imported model is completely visible.

14. If parts are missing, check the **View depth Up** and **Down** values in the **View Properties** dialog box and change them if necessary.

See also

COD model import settings (page 121)

14.5 CAD model import settings

The settings related to importing various types of models through the **Import Model** dialog box are listed below. All of the tabs and settings are not available for all import types. The import types are listed next to the settings, so that you can see which import type the settings belong to. The **Import Model** dialog box is displayed when you click **Properties** in the **Import Models** or **New Import Model** dialog box.

Conversion tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Import type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile conversion file</td>
<td>Set the conversion files you want to use. Conversion files map Tekla Structures profile and material names with names used in other software. For SteelFab/SCIA, these options are located on the Parameters tab.</td>
<td>CAD, FEM, CIS Model/CIMSteel, Eureka LMP, MicasPlus, SteelFab/SCIA</td>
</tr>
<tr>
<td>Material conversion file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twin profile conversion file</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advanced tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Import type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action when object status is</td>
<td>Previous plan lists the objects in your model, compared with the objects in the file to be imported. They can be New, Modified, Deleted, or Same. Tekla Structures compares the state of imported objects with those in your</td>
<td>CAD, FEM, MicasPlus</td>
</tr>
<tr>
<td>(compared to)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Import type

- **Not in model, Different,** or **Same.**

Use the options under **Not in model,** **Different,** and **Same** to specify the actions when importing changed objects. The options are **No action, Copy, Modify,** or **Delete.**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Import type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Pos_No</td>
<td>Enter a prefix and a start position number.</td>
<td>FEM</td>
</tr>
<tr>
<td>Assembly Pos_No</td>
<td>For SDNF, this option is located on the SDNF tab.</td>
<td></td>
</tr>
<tr>
<td>CIS version</td>
<td>Select CIS/1 or CIS/2:</td>
<td>CIS Model/CIMSteel</td>
</tr>
<tr>
<td></td>
<td>• CIS/1 imports files compatible with the CIMsteel LPM4DEP1 schema declaration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CIS/2 imports files compatible with the CIMsteel CIS/2 (STRUCTURAL_FRAME_SCHEMA) schema declaration.</td>
<td></td>
</tr>
<tr>
<td>Input scope</td>
<td>Import the Entire model or Selection only.</td>
<td>CIS2 status</td>
</tr>
<tr>
<td>Part rotation</td>
<td>Select Front or Top.</td>
<td>MicasPlus</td>
</tr>
<tr>
<td>Origin X, Y, Z</td>
<td>Set the origin coordinates to place the file in a specific location.</td>
<td>CAD</td>
</tr>
</tbody>
</table>

Parts tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Import type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Pos_No</td>
<td>Enter a prefix and a start position number.</td>
<td>FEM</td>
</tr>
<tr>
<td>Assembly Pos_No</td>
<td>For SDNF, this option is located on the SDNF tab.</td>
<td></td>
</tr>
</tbody>
</table>

Parameters tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Import type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type or Model type</td>
<td>Set the input file or model type:</td>
<td>CAD</td>
</tr>
<tr>
<td></td>
<td>• CAD: SDNF, Calma, HLI, Plantview, SDNF (PDMS), XML</td>
<td>FEM</td>
</tr>
<tr>
<td></td>
<td>• FEM: DSTV, SACS, Monorail, Staad, Stan 3d, Bus</td>
<td>CIS Model/CIMSteel</td>
</tr>
<tr>
<td></td>
<td>• CIS Model/CIMSteel: Design, Analysis, SP3D.</td>
<td></td>
</tr>
<tr>
<td>CIS version</td>
<td>Select CIS/1 or CIS/2:</td>
<td>CIS Model/CIMSteel</td>
</tr>
<tr>
<td></td>
<td>• CIS/1 imports files compatible with the CIMsteel LPM4DEP1 schema declaration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CIS/2 imports files compatible with the CIMsteel CIS/2 (STRUCTURAL_FRAME_SCHEMA) schema declaration.</td>
<td></td>
</tr>
<tr>
<td>Input scope</td>
<td>Import the Entire model or Selection only.</td>
<td>CIS2 status</td>
</tr>
<tr>
<td>Part rotation</td>
<td>Select Front or Top.</td>
<td>MicasPlus</td>
</tr>
<tr>
<td>Origin X, Y, Z</td>
<td>Set the origin coordinates to place the file in a specific location.</td>
<td>CAD</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Import type</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Default yield stress limit</td>
<td>The Default material when yield stress < limit setting is used for SACS import file. Define the material to use if yield stress is less than the limit.</td>
<td>FEM</td>
</tr>
<tr>
<td>Default material when yield stress > = limit</td>
<td>The setting Default material when yield stress >= limit is used for SACS or DSTV import files. For SACS, this field defines the material to use if yield stress is greater than or equal to the limit. For DSTV you can enter the material grade here, if it is not included in the import file.</td>
<td>FEM</td>
</tr>
<tr>
<td>Default material when yield stress < limit</td>
<td></td>
<td>CIS/CIMSteel</td>
</tr>
<tr>
<td>Combine members</td>
<td>To combine several elements in the FEM or CIS model into one part in Tekla Structures, set Combine members to Yes.</td>
<td>CIS Model/ CIMSteel</td>
</tr>
<tr>
<td>Max length for combining</td>
<td></td>
<td>CIS/CIMSteel</td>
</tr>
<tr>
<td>Ignore offsets</td>
<td>CIS/1 and CIS/2 analysis models can include member offsets, which means that nodes are not exactly at the beam's end points. With the default Yes, Tekla Structures uses these offsets to locate the physical members. With No, Tekla Structures determines the location using the node locations.</td>
<td>CIS/CIMSteel</td>
</tr>
<tr>
<td>Ignore forces</td>
<td>Use to define how forces are imported. With No, Tekla Structures imports absolute values of maximum forces to</td>
<td>CIS/CIMSteel</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Import type</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Import GUID (design model)</td>
<td>The part GUID is included in the import.</td>
<td>CIS/CIMSteel</td>
</tr>
<tr>
<td>Create log file</td>
<td>Select Create to write a new log file and delete the previous log file each time you import the model.
 Select Append (default) to add the log file information at the end of the existing log file.
 If you do not need a log file, select No.
 In SDNF, this option is on the SDNF tab.</td>
<td>CAD (SDNF) CIS2 status</td>
</tr>
<tr>
<td>Display log file</td>
<td>Select With an external viewer to display the log file in an external viewer, like Microsoft Notepad.
 If you do not want to display the file, select Not viewed.
 Select In a dialog box to create a separate list dialog box in which the file can only be viewed.
 In SDNF, this option is on the SDNF tab.</td>
<td>CAD (SDNF) CIS2 status</td>
</tr>
<tr>
<td>Import weldings</td>
<td>Include weldings in the imported model.</td>
<td>SteelFab/SCIA</td>
</tr>
<tr>
<td>Import bolt holes</td>
<td>Include bolt holes in the imported model.</td>
<td>SteelFab/SCIA</td>
</tr>
</tbody>
</table>

Report tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Import type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create report</td>
<td>Set to Yes to create a report.</td>
<td>CAD FEM</td>
</tr>
<tr>
<td>Display report</td>
<td>Set to Yes to display the report.</td>
<td>CAD FEM</td>
</tr>
<tr>
<td>Report template</td>
<td>Select the report template.</td>
<td>CAD FEM</td>
</tr>
<tr>
<td>Report file name</td>
<td>Enter the report file name or browse for a report file.</td>
<td>CAD FEM</td>
</tr>
</tbody>
</table>
SDNF tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Import type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Pos_No</td>
<td>Enter a prefix and a start position number. This settings relates to the Position number type setting.</td>
<td>CAD (SDNF)</td>
</tr>
<tr>
<td>SDNF version number</td>
<td>Set the SDNF format type to 2.0 or 3.0.</td>
<td>CAD (SDNF)</td>
</tr>
<tr>
<td>Apply cuts and fittings</td>
<td>Set to Yes (default) to apply cuts and fittings in the import.</td>
<td>CAD (SDNF)</td>
</tr>
<tr>
<td>Consider offsets</td>
<td>Set to Yes to create offsets. In most cases you should select Yes. No (default) positions part creation points at part end points.</td>
<td>CAD (SDNF)</td>
</tr>
<tr>
<td>Log file name</td>
<td>Enter the log file name or browse for an existing log file.</td>
<td>CAD (SDNF)</td>
</tr>
<tr>
<td>Position number type</td>
<td>The SDNF file contains identifiers that can be included in a part's user-defined attributes, or used as part position numbers. Select Part position if you want the identifier to become the part's position number. Do not use the Pos_No option with this option. Select Universal ID if you want the identifier to become a user-defined attribute for the part. For file imports from PDS or PDMS then the Universal ID option is the normal case. To make user-defined attributes visible in the dialog boxes, you need to add them to the objects.inp file.</td>
<td>CAD (SDNF)</td>
</tr>
</tbody>
</table>

Plantview tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Import type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Select the material grade.</td>
<td>CAD (Plantview) FEM (Staad)</td>
</tr>
</tbody>
</table>
DSTV tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Import type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Select the DSTV version.</td>
<td>FEM (DSTV)</td>
</tr>
<tr>
<td>Import static elements</td>
<td>If the DSTV file to be imported contains a static and a CAD model, you can choose which one to import. Answering Yes to Import static elements imports the static model. Answering Yes to Import other elements imports the CAD model.</td>
<td>FEM (DSTV)</td>
</tr>
<tr>
<td>Import other elements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stan 3d

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Import type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>Specify the scale of the import model. You can import Stan 3d without specifying the scale as long as both the Tekla Structures model and the import model are in millimeters. If the Stan 3d file is in millimeters, use the scale 1. If the Stan 3d file is in meters, use the scale 1000.</td>
<td>FEM (Stan 3d)</td>
</tr>
<tr>
<td>Material</td>
<td>Enter the material for the parts to import.</td>
<td>FEM (Stan 3d)</td>
</tr>
</tbody>
</table>

Bus tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Import type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos_No</td>
<td>Indicate the Pos_No of the girders, columns, braces and cantilevers you import.</td>
<td>FEM (Bus)</td>
</tr>
<tr>
<td>Material</td>
<td>Enter the material for the parts to import.</td>
<td>FEM (Bus)</td>
</tr>
<tr>
<td>Name</td>
<td>Enter the name of the parts to import.</td>
<td>FEM (Bus)</td>
</tr>
<tr>
<td>Class</td>
<td>Enter the class of the parts to import.</td>
<td>FEM (Bus)</td>
</tr>
<tr>
<td>Beams behind plane</td>
<td>The value Yes aligns the tops of all beams at the floor level.</td>
<td>FEM (Bus)</td>
</tr>
</tbody>
</table>

Advanced tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Import type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action when object status is (compared to)</td>
<td>Previous plan lists the objects in your model, compared with the objects in the file to be imported. They can be New, Modified, Deleted, or Same. Tekla Structures compares the state of imported objects with those in your</td>
<td>CAD, FEM, MicasPlus</td>
</tr>
</tbody>
</table>

CAD 126 CAD model import settings
Option	**Description**	**Import type**
model. They can be **Not in model**, **Different**, or **Same**. Use the options under **Not in model**, **Different**, and **Same** to specify the actions when importing changed objects. The options are **No action**, **Copy**, **Modify**, or **Delete**.	Eureka LMP CIS Model/ CIMSteel	

See also
- Import an SDNF model (page 116)
- Import a Plantview model (page 119)
- Import a SteelFab/SCIA model (page 120)

14.6 Export to CAD

You can export a CAD model in several formats.

NOTE Before you start an SDNF export, check that the advanced option `XS_SDNF_CONVERT_PL_PROFILE_TO_PLATE` has not been set on the Export page of the Advanced Options dialog box.

1. Open a Tekla Structures model.
2. On the **File** menu, click **Export --> CAD**.
 The CAD export dialog box opens.
3. Enter the paths to the required conversion files on the **Conversion** tab.
4. Go to the **Parameters** tab, and give a name to the export file in the **Output file** box.
 You can also browse for the file.
5. Select the export format from the **Type** list.
6. Use the **Origin X, Y, Z** boxes to specify the origin of the exported model.
7. In PML export, define PML-specific information on the **PML** tab.
8. In SDNF, SDNF (PDMS) and PDMS export, go to the **SDNF** tab, and define the necessary information.
9. Select the parts in the model to export.
10. Click **Apply** and **Create**.
 Tekla Structures creates the export file in your current model folder.
See also
CAD model export settings (page 128)
CAD import and export formats (page 115)

14.7 CAD model export settings

Settings related to exporting various types of models through the Export CAD dialog box are listed below. FEM export settings are also described. All of the tabs and settings are not available for all export types. The export types are listed next to the settings, so that you can see which export type the setting belongs to. The Export CAD dialog box opens when you click File menu --> Export --> CAD.

Conversion tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Export type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile conversion file</td>
<td>Set the conversion files you want to use.</td>
<td>All</td>
</tr>
<tr>
<td>Material conversion file</td>
<td>Conversion files map Tekla Structures profile and material names with names used in other software.</td>
<td>All</td>
</tr>
<tr>
<td>Twin profile conversion file</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameters tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Export type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output file</td>
<td>The file name of the exported file. You can also browse for the file.</td>
<td>All</td>
</tr>
<tr>
<td>Type</td>
<td>Select the export format.</td>
<td>All</td>
</tr>
<tr>
<td>Origin X, Y, Z</td>
<td>Set the origin coordinates to place the exported model in a specific location.</td>
<td>PML, SDNF, XML</td>
</tr>
<tr>
<td>Split members</td>
<td>Splits a part in the Tekla Structures model into several elements in the STAAD or DSTV model.</td>
<td>FEM</td>
</tr>
<tr>
<td>Combine segmented members (MicroSAS)</td>
<td>Gives you the option to combine multiple parts</td>
<td>FEM (MicroSAS)</td>
</tr>
</tbody>
</table>
Option Description

Option	**Description**	**Export type**
to form one part in the exported model. For example, if you have divided a beam into several elements and select the Yes option, Tekla Structures combines the elements so that they form one beam in the exported model. With the option No every element of the beam in the model forms individual beams.		

PML tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Export type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units (for PML only)</td>
<td>Select the units for the export model.</td>
<td>PML</td>
</tr>
<tr>
<td>Export cut parts</td>
<td>Controls whether cuts are included in the export. Yes exports part cuts. When you use PML, enter the Tekla Structures profile names in the conversion file. This makes the other software consider parts as beams and columns, not as plates, and reduces the export file size.</td>
<td>PML</td>
</tr>
</tbody>
</table>

SDNF tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Export type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDNF version number</td>
<td>Select the SDNF version to be used in the export. With StruCAD, use SDNF version 2.0.</td>
<td>SDNF PDMS</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Export type</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Apply cuts and fittings</td>
<td>Select Yes (default) applies cuts and fittings in the export.</td>
<td>SDNF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDNF(PDMS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDMS</td>
</tr>
<tr>
<td>Position number type</td>
<td>The SDNF file contains identifiers, which can be included in a part’s user-defined attributes, or as position numbers. You have the following options:</td>
<td>SDNF</td>
</tr>
<tr>
<td></td>
<td>• Part position</td>
<td>SDNF(PDMS)</td>
</tr>
<tr>
<td></td>
<td>The identifier becomes the part’s position number. Do not use the Part Pos_No fields with this option.</td>
<td>PDMS</td>
</tr>
<tr>
<td></td>
<td>• Assembly position</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The identifier becomes the assembly’s position number.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Universal ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The identifier becomes a user-defined attribute for the part.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To make user-defined attributes visible, you need to add them to the objects.inp file.</td>
<td></td>
</tr>
<tr>
<td>Consider offsets</td>
<td>To ignore the offset records during export, select No, and to take them into account, select Yes.</td>
<td>SDNF</td>
</tr>
<tr>
<td></td>
<td>This setting does not affect the actual start and end point information, only the offset. Tekla Structures writes the start and end</td>
<td>SDNF(PDMS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDMS</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Export type</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>points based on the actual solid object, not on the reference line.</td>
<td></td>
</tr>
<tr>
<td>PDMS phase offset</td>
<td>PDMS phase offset defines phase offset for exported parts. For example, if the first phase in Tekla Structures model is 1 and you enter 10 for phase offset, Tekla Structures parts in another software get the phase from 11 and up.</td>
<td>SDNF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDNF(PDMS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDMS</td>
</tr>
<tr>
<td>Engineering firm</td>
<td>Enter the name of the engineering company.</td>
<td>SDNF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDNF(PDMS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDMS</td>
</tr>
<tr>
<td>Client</td>
<td>Enter the name of the client.</td>
<td>SDNF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDNF(PDMS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDMS</td>
</tr>
<tr>
<td>Structure ID</td>
<td>Enter a unique identification number for the exported model.</td>
<td>SDNF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDNF(PDMS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDMS</td>
</tr>
<tr>
<td>Project ID</td>
<td>Enter a unique identification number for the exported project.</td>
<td>SDNF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDNF(PDMS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDMS</td>
</tr>
<tr>
<td>Revision number</td>
<td>Enter an optional revision number. Tekla Structures takes the revision number from the user-defined attributes (REVISION_NUMBER) of the model. If this field is blank, Tekla Structures uses a revision number from the CAD export dialog box (Revision Number).</td>
<td>SDNF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDNF(PDMS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDMS</td>
</tr>
<tr>
<td>Issue code</td>
<td>Tekla Structures writes an issue code in the header section of the output file. For PDMS,</td>
<td>SDNF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDNF(PDMS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDMS</td>
</tr>
</tbody>
</table>

CAD 131 **CAD model export settings**
Design code

- **Option**: Define the design code to be used in structural design.
- **Export type**: SDNF, SDNF(PDMS), PDMS

XML tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Export type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>Specify unit conversions (MM, M, IN, FT). For example, for a Tekla Structures model created using millimeters, select IN to convert all part dimensions to inches in the output file.</td>
<td>XML</td>
</tr>
<tr>
<td>XML structure ID</td>
<td>Unique identification number for the exported model. You must always enter the identification ID. Tekla Structures uses this value to identify the model if you re-export it.</td>
<td>XML</td>
</tr>
<tr>
<td>XML structure name</td>
<td>Unique name of the exported model.</td>
<td>XML</td>
</tr>
</tbody>
</table>

Staad tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Export type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile table</td>
<td>Select the profile type.</td>
<td>FEM (STAAD)</td>
</tr>
</tbody>
</table>
| **Parametric shapes when possible** | Use to define how Tekla Structures exports the profiles PL, P, D, PD, SPD to Staad.
Yes exports the profiles as parametric shapes so that STAAD can identify them correctly.
No exports all profiles as standard STAAD shapes. | FEM (STAAD) |
DSTV tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Export type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Select the DSTV version to export.</td>
<td>FEM (DSTV)</td>
</tr>
<tr>
<td>Element reference with</td>
<td>Select CROSS-SECTION to export a static model or MEMBER_LOCATION to export a CAD model.</td>
<td>FEM (DSTV)</td>
</tr>
</tbody>
</table>

14.8 Re-import a CAD model

Sometimes you have already imported a model, but because of some changes, you need to re-import it.

The profile and material conversion files need to be the same as adopted in the original model import.

The following instructions also apply to CIMsteel (cis/2) models.

1. Open Tekla Structures and a model where you have already imported an existing CAD model.
2. On the File menu, click Import --> CAD.
3. Select the import type in the Type list.
 For CAD models, this will generally be for SDNF format files only.
4. Enter a new name for the imported model in the Name box.
 The total path and filename cannot be longer than 80 characters. If the total path is too long, a message is displayed saying "File name and path is too long. Please, place the file into another directory." Also, if you use the same name as in the original import, Tekla Structures gives the warning message "Illegal name for import model."
5. Click the Properties button and ensure that the Profile material conversion files on the Conversion tab are the same as adopted in the original model import.
6. Go to the Advanced tab and define the actions Tekla Structures takes when importing changed objects:
 • The left-hand column, Previous plan, lists the state of the objects in your model, compared with the state of objects in the file to be imported. They can be New, Modified, Deleted, or Same.
 • The objects can be Not in model, Different, or Same.
• Use the list boxes in the rows under Not in model, Different, or Same to specify the actions to take when importing changed objects. The options are No action, Copy, Modify, or Delete.

You can select Delete only for Deleted objects. You can only use Delete to delete objects that have been deleted from your model, not from the imported model.

• Normally, default settings would be used by most users.

7. Click OK or Apply.
8. Click OK in the Import Model dialog box to import the updated model.
9. Create reports on the Report tab to compare the various imports.

See also
CAD model import settings (page 121)
Create import reports (page 134)

14.9 Create import reports

Some of the import tools give you the option to create a report of the import. By default, Tekla Structures does not create reports when you import files.

With this import report you can compare different revisions from previous imports. You can list the differences in profiles, material, part rotation, part position, paint, start connection codes, end connection codes, phase, for example.

1. Open the import tool, for example, CAD (File menu --> Import --> CAD).
2. Go to the Report tab of the import dialog box.
3. In Create report, select Yes.
4. In Display report, select Yes to display the report file.
5. In Report template, enter the path of the report template, or use the browse button to locate it.

You can also leave the template name out, in which case the default import template is used.

6. In Report file name, enter the path for the report file, or use the browse button to locate it.

You can also leave the report file name out, in which case the default import report file is used.

7. Import the model.
The model is imported and the report is displayed on the screen.
If you have not given the report any other name, the report is saved with the name import_revision_report.rpt in the model folder.

See also
CAD model import settings (page 121)
FEM (Finite Element Method) is an analysis and calculation method used in structural engineering. In this element method, the target is divided into appropriate finite elements interconnected at points called nodes.

Tekla Structures FEM import and export tool support several formats and provide several options for importing and exporting models.

See also
FEM import and export file types (page 136)

15.1 FEM import and export file types

You can import the following file types into Tekla Structures using the FEM import tool.

<table>
<thead>
<tr>
<th>Option</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSTV</td>
<td>DSTV format data (Deutsche Stahlbau-Verband). Several different systems, for example, RSTAB static software and Masterseries Analysis & Design system.</td>
</tr>
<tr>
<td>SACS</td>
<td>SACS modeling and analysis software</td>
</tr>
<tr>
<td>S-Frame</td>
<td>Analysis software, for example, FASTSOLVE.</td>
</tr>
<tr>
<td>Monorail</td>
<td>Monorail system</td>
</tr>
<tr>
<td>STAAD</td>
<td>STAAD format data (Structural Analysis And Design). STAAD modeling and analysis system.</td>
</tr>
<tr>
<td>Stan 3d</td>
<td>Stan 3d analysis software</td>
</tr>
<tr>
<td>Bus</td>
<td>BUS 2.5 analysis software</td>
</tr>
</tbody>
</table>

You can export to the following formats: DSTV, MicroSAS, and STAAD.

See also
15.2 DSTV

DSTV (Deutscher Stahlbau-Verband) manufacturing format is the standard format used for manufacturing steel components on numerically controlled (NC) machines. It also has an Analysis & Design format that is used for transferring Analysis & Design models to the physical 3D model.

Different programs produce different DSTV files. For example, the DSTV file produced by RSTAB static software only contains a static model. Tekla Structures exports either the static model (CROSS_SECTION), or the CAD model (MEMBER_LOCATION).

See also
Import a DSTV model (page 137)

15.3 Import a DSTV model

1. On the File menu, click Import --> FEM.
 The New Import Model dialog box opens.
2. Select Import FEM.
3. Select import model (default) from the list or enter a new name.
4. Click OK.
5. Click Properties to open a dialog box where you can define the settings for the import file:
 • On the Conversion tab, enter the conversion file names or browse for the files.
 • On the Parts tab, enter a prefix and a start position number for the imported parts in the Part Pos_No and Assembly Pos_No boxes.
 • On the Parameters tab, enter the name of the DSTV file you want to import in the Input file box, or use the default name.
 • On the Parameters tab, set the file type to DSTV in the Type box, and set the origin coordinates in the Origin boxes if you want the file in a specific location.
 • If you wish to create a report of the import, enter the required information on the Report tab.
 • Select the DSTV version on the DSTV tab.
 For Masterseries, the DSTV99 format must be selected.
• Still on the DSTV tab, set Import static elements to Yes to import a static model. If you set Import other elements to Yes, a CAD model is imported.

6. Click OK to go to the Import Model dialog box.

7. Select the model to import.

8. Click Import.

 Tekla Structures displays the Import model info dialog box.

9. Select which version of parts to import.

10. Click Accept all.

 If you have changed the model and want to re-import it, you can also reject all changes by clicking Reject all, or accept or reject individual changes by clicking Select individual.

11. Tekla Structures displays the message Do you want to save the import model for subsequent imports? Click Yes.

 Tekla Structures displays the import model in a model view.

12. Right-click the model view and select Fit work area to entire model to ensure that the imported model is completely visible.

13. If parts are missing, check the View depth Up and Down values in the View Properties dialog box and change them if necessary.

See also

CAD model import settings (page 121)

15.4 Import a STAAD model

This FEM import tool imports steel structures from the STAAD modeling and analysis system.

NOTE To make a STAAD input file compatible with the Tekla Structures STAAD import, use the option Joint coordinate format (Single) to save the input file in STAAD. This creates a line for each coordinate in the input file.

1. On the File menu, click Import --> FEM.

 The New Import Model dialog box opens.

2. Select Import FEM.

3. Use the default name import model or enter a name for the import model.

4. Click OK.
5. Select the model.

6. Click **Properties** to open a dialog box where you can define the settings for the import file type you selected:
 - On the **Conversion** tab, enter the conversion file names or browse for the conversion files.
 - On the **Parameters** tab, enter the name of the STAAD file you want to import in the **Input file** box.
 - Set the file type to **STAAD** in the **Type** box, and set the origin coordinates in the **Origin** boxes if you want the file in a specific location.
 - Set the material grade in the **Material** box on the **Staad** tab.
 You can also click ... next to the box, and browse for the material grade in the **Select Material** dialog box.
 - If you wish to create a report of the import, enter the required information on the **Report** tab.
 - If you are importing the model for the first time, you do not need to change the default values on the **Advanced** tab.

7. Click **OK** to go to the **Import Model** dialog box.

8. Click **Import**.
 Tekla Structures displays the **Import model info** dialog box.

9. Select which version of parts to import.

10. Click **Accept all**.
 If you have changed the model and want to re-import it, you can also reject all changes by clicking **Reject all**, or accept or reject individual changes by clicking **Select individual**.

11. Tekla Structures displays the message **Do you want to save the import model for subsequent imports?** Click **Yes**.
 Tekla Structures displays the import model in a model view.

12. Right-click the model view and select **Fit work area to entire model** to ensure that the imported model is completely visible.

13. If parts are missing, check the **View depth Up** and **Down** values in the **View Properties** dialog box and change them if necessary.

NOTE FEM import is one way to import STAAD data. Direct link to STAAD.Pro analysis and design application is another, more versatile way to import.

See also

STAAD table type specifications (page 140)
STAAD table type specifications

Tekla Structures supports the following STAAD table type specifications:

- ST (single section from the standard built-in tables)
- ST PIPE (parametric)
- ST TUBE (parametric)
- RA (single angle with reverse Y_Z axes)
- D (double channel)
- LD (long leg, double angle)
- SD (short leg, double angle)
- TC (beams with top cover plates)
- BC (beams with bottom cover plates)
- TB (beams with top and bottom cover plates)

You can import the types CM and T, user-provided steel table types (UPT), and other non-standard profiles, if you have defined them in the profile conversion file. You must use the underscore character in the STAAD name, for example, UPT_1_W10X49. Tekla Structures automatically converts twin profiles in this import routine.

See also
Import a STAAD model (page 138)

15.5 Import a Stan 3d model

1. On the File menu, click Import --> FEM.
 The New Import Model dialog box opens.
2. Select Import FEM.
3. Use the default import file name import model or enter another name.
4. Click OK.
5. Select the model to import.
6. Click Properties to open a dialog box where you can define the settings for the import file type you selected:
• On the **Conversion** tab, enter the conversion file names or browse for the conversion files.

• On the **Parameters** tab, enter the name of the file you want to import in the **Input file** box.

• Set the file type to **Stan 3d** in the **Type** box, and set the origin coordinates in the **Origin** boxes if you want the file in a specific location.

• If you wish to create a report of the import, enter the required information on the **Report** tab.

• If you are importing the model for the first time, you do not need to change the default values on the **Advanced** tab.

7. Click **OK** to go to the **Import Model** dialog box.

8. Click **Import**.

 Tekla Structures displays the **Import model info** dialog box.

9. Select which version of parts to import.

10. Click **Accept all**.

 If you have changed the model and want to re-import it, you can also reject all changes by clicking **Reject all**, or accept or reject individual changes by clicking **Select individual**.

11. Tekla Structures displays the message **Do you want to save the import model for subsequent imports?** Click **Yes**.

 Tekla Structures displays the import model in a model view.

12. Right-click the model view and select **Fit work area to entire model** to ensure that the imported model is completely visible.

13. If parts are missing, check the **View depth Up** and **Down** values in the **View Properties** dialog box and change them if necessary.

See also

[CAD model import settings (page 121)]

15.6 Import a Bus model

The Bus import tool imports basic steel structures from the BUS 2.5 analysis software input file.

1. On the **File** menu, click **Import --> FEM**.

 The **New Import Model** dialog box opens.

2. Select **Import FEM**.

3. Use the default name **import model** or enter another name.
4. Click **OK**.
5. Select the model.
6. Click **Properties** to open a dialog box where you can define the settings for the import file type you selected:
 - On the **Conversion** tab, enter the conversion file names or browse for the conversion files.
 - On the **Parameters** tab, enter the name of the Bus file you want to import in the **Input file** box.
 - Set the file type to **Bus** in the **Type** box, and set the origin coordinates in the **Origin** boxes if you want the file in a specific location.
 - On the **Bus** tab, enter the position number, material, name, and class of the parts to import. Use **Beams behind plane** to indicate the position of girders and cantilevers. The option **Yes** aligns the tops of all beams at the floor level.
 - If you wish to create a report of the import, enter the required information on the **Report** tab.
 - If you are importing the model for the first time, you do not need to change the default values on the **Advanced** tab.
7. Click **OK** to go to the **Import Model** dialog box.
8. Click **Import**.
 Tekla Structures displays the **Import model info** dialog box.
9. Select which version of parts to import.
10. Click **Accept all**.
 If you have changed the model and want to re-import it, you can also reject all changes by clicking **Reject all**, or accept or reject individual changes by clicking **Select individual**.
11. Tekla Structures displays the message **Do you want to save the import model for subsequent imports?** Click **Yes**.
 Tekla Structures displays the import model in a model view.
12. Right-click the model view and select **Fit work area to entire model** to ensure that the imported model is completely visible.
13. If parts are missing, check the **View depth Up** and **Down** values in the **View Properties** dialog box and change them if necessary.

See also

CAD model import settings (page 121)
15.7 Export to STAAD

1. Open a Tekla Structures model.
2. On the File menu, click Export --> FEM.
 The FEM export dialog box opens.
3. Go to the Conversion tab and enter the names of the conversion files, or browse for the files.
4. Go to the Parameters tab, and enter the name of the output file, or browse for the file.
5. Select Staad in the Type list.
6. Set Split members to Yes to split a part in the Tekla Structures model into several elements in the STAAD model.
7. Go to the Staad tab and select an option from Profile type list.
8. Use the setting Parametric shapes when possible to define how Tekla Structures exports the profiles PL, P, D, PD, SPD to Staad.
 - Yes exports the profiles as parametric shapes so that STAAD can identify them correctly.
 - No exports all profiles as standard STAAD shapes.

Tekla Structures creates the export file in the current model folder.

Example

Example of a plate PL10*200 when exported as parametric shape (Yes):

13 PRI YD 200.000000 ZD 10.000000.

Example of the same plate exported as a standard shape (No):

13 TABLE ST PL10*200

NOTE FEM export is one way to export STAAD data. Direct link to STAAD.Pro analysis and design application is another, more versatile way to export.

See also

STAAD.Pro (page 307)

15.8 Export to DSTV

NOTE The FEM DSTV export is not the same as DSTV export (File menu --> Export --> NC files), which produces DSTV files to be used as instruction files for NC machines. The FEM DSTV export is intended to
be used for transferring the model in the DSTV format. The DSTV file (*.stp) saves the data elements (end points, material, cross sections, references) as a standard DSTV file for importing and exporting models. For more information about creating NC files in DSTV format, see Create NC files in DSTV format (page 170).

1. Open a Tekla Structures model.
2. On the File menu, click Export --> FEM.
 The FEM export dialog box opens.
3. Go to the Conversion tab and enter the names of the conversion files, or browse for the files.
4. Go to the Parameters tab, and enter the name of the output file, or browse for the file.
5. Select DSTV in the Type list.
6. Set Split members to Yes to split a part in the Tekla Structures model into several elements in the DSTV model.
7. Go to the DSTV tab and select the DSTV version from the Version list.
8. In Element reference with, select whether you want to export into a static model CROSS_SECTION, or into a CAD model MEMBER_LOCATION.

See also
Supported DSTV entities (page 144)

Supported DSTV entities
The DSTV entities are listed below. Tekla Structures supports those marked with an asterisk (*). See the DSTV standard "Stahlbau - Teil 1. März 2000" for more information.

Static data:
vertex (*)
polyline
substructure (*)
node (*)
element (*)
element_eccentricity (*)
raster
boundary_condition
elastic_support
nodal_reaction
element_reaction

General data:
material (*)
cross_section (*)

CAD data:
member (*)
member_location (*)
construction-data
cutout
hole

See also
Export to DSTV (page 143)
ASCII stands for American Standard Code for Information Interchange. Some plant design systems export ASCII files, for example, ModelDraft, PDS and PDMS.

You can import and export profiles and plates created as beams using the ASCII format.

See also
Import a model in the ASCII format (page 146)
Export a model to the ASCII format (page 146)
ASCII file description (page 147)

16.1 Import a model in the ASCII format

2. Create a new 3D view.
3. Copy the ASCII file to the model folder.
4. Name the file import.asc.
5. On the File menu, click Import --> ASCII .
 Tekla Structures displays the main parts created from the ASCII file in the model.

See also
ASCII (page 146)
Export a model to the ASCII format (page 146)
ASCII file description (page 147)
16.2 Export a model to the ASCII format

1. Open the Tekla Structures model you want to export.
2. Select the parts in the model you want to export.
3. On the File menu, click Export --> ASCII.

 Tekla Structures creates a model.asc file in the current model folder.

See also
ASCII (page 146)
Import a model in the ASCII format (page 146)
ASCII file description (page 147)

16.3 ASCII file description

In an import.asc file each part is described by 8 lines. These lines are repeated for each part to be transferred. Units are always in millimeters, blanks are used as separators.

Below is an example of a beam part description:

```
4169 HEA300 1
290.000000 8.500000 300.000000 14.000000 300.000000 14.000000
A/6 BEAM
5235JR 5235JR
0.000000
16.500000 24000.000000 4855.000000
6000.000000 24000.000000 4855.000000
16.500000 24000.000000 5855.000000
```

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 1</td>
<td>4169 HEA300 1 = ID profile type</td>
</tr>
<tr>
<td></td>
<td>• ID 4169: Unique ID (integer).</td>
</tr>
<tr>
<td></td>
<td>• PROFILE HEA300: Profile name (string).</td>
</tr>
<tr>
<td></td>
<td>• TYPE 1: Profile type (integer)</td>
</tr>
<tr>
<td></td>
<td>The available profile types are:</td>
</tr>
<tr>
<td></td>
<td>0 = free cross section (can be used for special profiles which are not in the database)</td>
</tr>
<tr>
<td></td>
<td>1 = I profiles</td>
</tr>
<tr>
<td></td>
<td>2 = Welded hollow core profiles (HK, HQ)</td>
</tr>
<tr>
<td>Line</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>3</td>
<td>U profiles</td>
</tr>
<tr>
<td>4</td>
<td>L profiles</td>
</tr>
<tr>
<td>5</td>
<td>Round bars</td>
</tr>
<tr>
<td>6</td>
<td>Round tubes</td>
</tr>
<tr>
<td>7</td>
<td>Rectangular hollow core sections (RHS, P)</td>
</tr>
<tr>
<td>8</td>
<td>T profiles</td>
</tr>
<tr>
<td>9</td>
<td>Rectangular bars (FL, PL)</td>
</tr>
<tr>
<td>10</td>
<td>Z profiles</td>
</tr>
<tr>
<td>11</td>
<td>C profiles</td>
</tr>
<tr>
<td>12</td>
<td>Omega profiles</td>
</tr>
<tr>
<td>13</td>
<td>Sigma profiles</td>
</tr>
<tr>
<td>14</td>
<td>Rail profile</td>
</tr>
<tr>
<td>16</td>
<td>Reinforcement bars (DH)</td>
</tr>
</tbody>
</table>

Line 2: The contents of line 2 depend on the part profile.

- Polygon plates:

 N_POINTS COORDINATES
 N_POINTS: For profiles of type 0.
 COORDINATES: Number of the corner points (integer).
 The X and Y coordinates of the plate corners (floating). Rotation direction is clockwise. Coordinates follow the global coordinate system. Z coordinates are taken from the center line in the plate thickness direction.
 Note that the line 2 can be divided into several rows in the file.

- Profiles:

 For profile types 1-16, the line includes the physical dimensions of the cross section.

 HEIGHT S W1 T1 W2 T2: 290.000000 8.500000 300.000000 14.000000 300.000000 14.000000
 - HEIGHT 290.000000: Height of the cross section
 - S 8.500000: Web thickness.
 - W1 300.000000: Width of the upper flange.
 - T1 14.000000: Thickness of the upper flange.
 - W2 300.000000: Width of the lower flange.
 - T2 14.000000: Thickness of the lower flange.
<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3 | A/6 BEAM = mark name
| | • MARK A/6: Position mark of the part (string).
| | • NAME BEAM: Part name (string). |
| 4 | S235JR S235JR = material
| | Material of the part (string). |
| 5 | 0.000000 = rotation
| | Rotation angle (in degrees) around the local x-axis of the beam. |
| 6 | 16.500000 24000.000000 4855.000000 = X1 Y1 Z1
| | Coordinates of the beam start point. Z coordinates are center-line coordinates. |
| 7 | 6000.000000 24000.000000 4855.000000 = X2 Y2 Z2
| | Coordinates of the beam end point. Z-coordinates are center-line coordinates. |
| 8 | 16.500000 24000.000000 5855.0000000 = X3 Y3 Z3
| | Direction vector showing the direction of the local z-axis. |

See also

ASCII (page 146)
Import a model in the ASCII format (page 146)
Export a model to the ASCII format (page 146)
You can import user-defined attribute (UDA) values to a model from a text file. For example, you can import a list of manufactured or checked assemblies.

You can import the attribute values to Tekla Structures model objects, drawings or some reference model objects by selecting an area in the model, or the whole model.

The imported file can be:

• Exported from other software.
• Created manually using any standard text editor, for example, Microsoft Notepad.
• A simple Tekla Structures report containing the part IDs and user-defined attributes.

See also
Import attributes (page 150)
Input files in attribute import (page 151)
Examples of input files used in attribute import (page 152)
Data file used in attribute import (page 154)
Attribute import settings (page 154)

17.1 Import attributes
You can import user-defined attribute (UDA) values from a text file.

1. Copy the text file that you want to import to the current model folder.

2. If you want to import user-defined attributes to a selected area in the Tekla Structures model, select an area in the model.

3. On the File menu, click Import --> Attributes.

 The Import Attribute dialog box opens.
4. Click the ... button next to the **Input file** box to browse for the file to be imported.

5. Select the delimiter used in the text file.

6. Select an option in the **Input scope**, **Create log file** and **Display log file** boxes.

7. Click **Create** to import the file.

See also

- Input files in attribute import (page 151)
- Examples of input files used in attribute import (page 152)
- Data file used in attribute import (page 154)
- Attribute import settings (page 154)

17.2 Input files in attribute import

Input files used in the import of user-defined attribute (UDA) values are text files, which are delimited by a comma, tab, semi-colon, space or a user-defined delimiter. The input files contain the names and values of the user-defined attributes to be imported to the Tekla Structures model.

In the input file, the column headings must contain the names of properties and user-defined attributes in model objects and drawings. The remaining lines contain the values of the properties and user-defined attributes.

You must include at least one key field as a column heading. Key fields are drawing or model object properties. Tekla Structures uses the key fields to identify the model objects or drawings to which the user-defined attributes are assigned.

The key fields for model objects are:

<table>
<thead>
<tr>
<th>Key field</th>
<th>Example</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUID</td>
<td>ID4FEAF8C88-0000-0004-3133-343038303031</td>
<td>Tekla Structures assigns the user-defined attributes on this line in the input file to the model object that has a GUID value of ID4FEAF8C88-0000-0004-3133-343038303031.</td>
</tr>
<tr>
<td>ASSEMBLY_POS</td>
<td>A3</td>
<td>Tekla Structures assigns the user-defined attributes on this line in the input file to the assembly that has an ASSEMBLY_POS value of A3. Repeat this line for each assembly you want to include.</td>
</tr>
<tr>
<td>or MARK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key field</td>
<td>Example</td>
<td>Action</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>PHASE</td>
<td>2</td>
<td>Tekla Structures assigns the user-defined attributes on this line in the input file to the assembly that has a PHASE value of 2. You must also use ASSEMBLY_POS as a key field with this option.</td>
</tr>
</tbody>
</table>

The key fields for drawing objects are:

<table>
<thead>
<tr>
<th>Key field</th>
<th>Example</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE NAME</td>
<td>A D4</td>
<td>Tekla Structures assigns the user-defined attributes on this line in the input file to the drawing that has a TYPE value of A and a MARK value of D4. Use both key fields in the input file.</td>
</tr>
<tr>
<td>ID</td>
<td>134</td>
<td>Tekla Structures assigns the user-defined attributes in this line in the input file to the drawing object that has an ID value of 134.</td>
</tr>
</tbody>
</table>

If you want to use user-defined attributes of other value types than the string in the input file, you need to define them in the import_macro_data_types.dat file, located in the ..\Tekla_Structures <version>\environments\common\system folder.

TIP If you use Microsoft Excel to create the input file, save the file with the Save as command to Text (Tab-delimited) (*.txt) format.

See also
Attribute import (page 150)
Import attributes (page 150)
Examples of input files used in attribute import (page 152)
Data file used in attribute import (page 154)
Attribute import settings (page 154)

Examples of input files used in attribute import

Example input file for parts
ASSEMBLY_POS and PHASE are the key fields. Tekla Structures adds several user-defined attributes to the assemblies with values that match those listed in the ASSEMBLY_POS and PHASE columns.

For example, an assembly with the ASSEMBLY_POS (assembly number) of B5 in phase 1 gets the following user-defined attributes:
The input file contains several entries for B1. In this case, Tekla Structures writes the message **Duplicate entry in input file** in the log file and does not overwrite the user-defined attributes that are listed earlier in the file with those that are listed later. For example, at the end of the attribute import, B1 will have the following user-defined attributes:

- **STATUS**: 7
- **USER_PHASE**: 3
- **USER_ISSUE**: 3/25/2012

This input file is tab-delimited. You can also use a comma, semi-colon, space or a user-defined delimiter.

Example input file for drawings

TYPE and **NAME** are the key fields. Tekla Structures adds a value for the user-defined attribute **User field 4** to drawings with values that match those listed in the **TYPE** and **NAME** columns.

For example, a drawing with the **TYPE A** (assembly drawing) and **NAME B.2** gets the value 4 in the **User field 4**.

See also

- Attribute import (page 150)
- Import attributes (page 150)
- Input files in attribute import (page 151)
Data file used in attribute import

If you want to use user-defined attributes of other value types besides string in the attribute import input file, you need to define them in the import_macro_data_types.dat file, located in the ..\Tekla Structures \<version>\environments\common\system folder.

The import_macro_data_types.dat file is a simple text file listing the user-defined attributes that you can include in an input file.

You can modify the file using any standard text editor, for example, Microsoft Notepad.

You can:

• Change any of the user-defined attributes that are not key fields.

• Add user-defined attributes as INT, STRING, FLOAT, or DATE value types.

The file contains the following columns:

VARIABLE_NAME, VARIABLE_TYPE, CONVERSION_FACTOR, COMMENT

NOTE Tekla Structures uses CONVERSION_FACTOR to convert imperial values to metric values. Tekla Structures only uses this value in Imperial environments. We recommend that you check the FLOAT values to avoid conversion factor errors.

Tekla Structures treats lines starting with double forward slash characters // as comments and ignores them when reading the file.

See also

Attribute import (page 150)
Import attributes (page 150)
Input files in attribute import (page 151)
Examples of input files used in attribute import (page 152)
Attribute import settings (page 154)
17.3 Attribute import settings

Use the options in the **Import Attribute** dialog box to define the input scope and log file properties when importing user-defined attribute (UDA) values from a text file to a model.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input file delimiters</td>
<td>Select the delimiter used in the input file.</td>
</tr>
</tbody>
</table>
| **Input scope** | • **Default, Entire model**
Tekla Structures assigns the user-defined attribute values of objects in the input file to matching objects in the model.
• **Selection only**
Tekla Structures only assigns the user-defined attribute values of objects in the input file to matching objects in the selected area of the model.
Use this option to import user-defined attributes to models. Do not use it for drawings.
• **Reference models**
Tekla Structures assigns the user-defined attribute values of objects in the input file to matching objects in reference models. |
| **Create log file** | • **Create**
Creates a new log file named *attribute_import.log* in the current model folder each time you import the user-defined attributes. Any previous attribute import log files are overwritten.
• **Append**
Adds log entries to the *attribute_import.log* file in the current model folder each time you import the user-defined attributes. If the log file does not exist, Tekla Structures creates it.
• **No**
Does not create a log file. |
| **Display log file** | • **No**
The log file is not displayed.
• **On dialog**
Tekla Structures displays the log file in a separate window. Click an object ID in the log file to highlight the part in the model. |
See also
Attribute import (page 150)
Import attributes (page 150)
Input files in attribute import (page 151)
Examples of input files used in attribute import (page 152)
Data file used in attribute import (page 154)
The CIS (CIMsteel Integration Standards) is one of the results of the Eureka CIMsteel project. The current version CIS/2 is an extended and enhanced second-generation release of the CIS. It was developed to facilitate a more integrated method of working through the sharing and management of information within, and between, companies involved in the planning, design, analysis and construction of steel framed buildings and structures.

There is one limitation: multi-material objects cannot be defined, because the standard concentrates on steel objects.

See also

CAD model import settings (page 121)

18.1 Import a CIMSteel model

1. On the File menu, click Import --> CIMSteel.
 The Import Model dialog box opens.
2. Select Import CIS model from the Type list.
3. Use the default name import model or enter a new name.
4. Click OK.
5. Select the model from the list.
6. Click Properties to open a dialog box where you can define the settings for the import file type you selected.
7. On the Parameters tab, enter the following information:
 • Select the Model type, which can be Analysis, Design or SP3D.
 • Select CIS/1 or CIS/2 from the CIS version list.
 • Enter the name of the model file in the Input file box.
 You can also browse for the file.
• Set the origin coordinates to place the file in a specific location.
• To combine several elements in the CIS model into one part in Tekla Structures, set Combine members to Yes.
• Use Max length for combining to define the maximum length for combining parts (the maximum length of the combined parts together).
• Set Ignore offsets Yes if you want Tekla Structures to use member offsets to locate the physical members.
• In Ignore forces, indicate how forces are imported.
• To also import part GUIDS, set Import GUID (design model) to Yes.

8. On the Conversion tab, enter the conversion file names or browse for the conversion files.
9. Click OK to go to the Import Model dialog box.
10. Click Import.
 Tekla Structures displays the Import model info dialog box.
11. Select which version of parts to import.
12. Click Accept all.
 If you have changed the model and want to re-import it, you can also reject all changes by clicking Reject all, or accept or reject individual changes by clicking Select individual.
13. Tekla Structures displays the message Do you want to save the import model for subsequent imports? Click Yes.
 Tekla Structures displays the import model in a model view.
14. Right-click the model view and select Fit work area to entire model to ensure that the imported model is completely visible.
15. If parts are missing, check the View depth Up and Down values in the View Properties dialog box and change them if necessary.

See also
CAD model import settings (page 121)

18.2 Export to a CIMSteel analysis model
1. Open a Tekla Structures model that you want to export.
2. Select the objects to export using the appropriate selection switches or filters.
3. On the File menu, click Export --> CIMSteel: Analysis model.
4. Select the CIS version from the **CIS version** list.
 - **CIS/1** generates a file that is compatible with the CIMsteel LPM4DEP1 schema declaration.
 - **CIS/2** generates a file compatible with the CIMSteel CIS/2 *(STRUCTURAL_FRAME_SCHEMA)* schema declaration.

5. Enter a name for the export file in the **Step file** box or accept the default.
 You can enter the path or browse for it. If you do not enter a path, Tekla Structures creates the export file in the current model folder.

6. If required, enter a name and organization to identify who created the export file.

7. From the **Flavor** list, select one of the following standards to apply to the export: **UK**, **EUROPEAN**, or **US**.

8. Set units to **metric** or **imperial** in the **Linear units (CIS/2 only)** box.
 Imperial is only available for CIS/2. CIS/1 is always exported in metric units.

9. Enter coordinate values in **Origin X**, **Y**, and **Z** boxes if you want to export the model to a specific location.
 The origin comes from the origin in Tekla Structures.

10. To split a part in the Tekla Structures model into several elements in the CIMsteel model, set **Split members** to **Yes**.

 For example, three columns may be connected to a beam in a model, so that one column is in the middle and the others are at each end of the beam. With the **Yes** option the beam is split into two equal elements in the CIMsteel model. With the **No** option there will be one beam, a single linear element, and two nodes (a node at each end) in the CIMsteel model.

11. Click **Apply** and **Create**.

 Tekla Structures exports the CIMSteel analysis model to the current model folder, or to another folder you specified, using the name you specified.

See also

CIS and CIMSteel (page 157)

18.3 Export to a CIMSteel design/manufacturing model

1. Open a Tekla Structures model that you want to export.

2. Select the parts that you want to export.

3. On the **File** menu, click **Export --> CIMSteel: Design/Manufacturing Model**.
4. Go to the **Parameters** tab and specify the required information:
 - Select the **LPM version**: LPM4 or LPM5.
 - Enter name for the export file in the **Output file** box or accept the default.
 You can enter the path or browse for it. If you do not enter a path, Tekla Structures creates the export file in the current model folder.
 - Select the model type from the **CIS/2 model type** list. The options are **manufacturing**, **design**, and **SP3D**.
 - Set units to **metric** or **imperial** in the **Linear units (CIS/2 only)** box.
 With Imperial units Tekla Structures writes all of the designations for nuts, bolts, and washers in fractional inches.
 - Enter a name for the structure in the **Structure name** field.
 - Enter the path to the **profile** and material conversion files or browse for them.
 If you leave the profile and material conversion file paths empty, Tekla Structures uses the conversion files in the current profile folder for the conversion.
 - To export globally unique IDs instead of internal ID numbers, set **Export Globally unique ID** to **Yes**.
 - If you want to export concrete parts, set **Export concrete** to **Yes**.

5. Go to the **Standards** tab, and select the appropriate profile, material, and bolt standard organization, name and year.
 If you do not enter the standard organization or the name, Tekla Structures places an empty entry (""") in the export file. If you do not give the year, Tekla Structures uses 1999 as the default value.

6. If you are exporting to a manufacturing model, go to the **Manufacturing** tab, and specify the required information:
 - Set **Include NC files** to **Yes** to include information on NC files in the export.
 - In **NC file directory**, specify the path (relative to the current model folder) to the folder where the NC files are located.

7. If you are exporting to a design model, go to the **Design model** tab, and set **Export design connections** to **Yes** to export design connections.

8. Click **Apply** and **Create**.
 Tekla Structures exports the CIMSteel design or manufacturing model to the current model folder, or to another folder you specified, using the name you specified.
CIMSteel conversion files

Here are examples of the contents of the conversion files used in CIMSteel conversion.

Example 1

This example shows part of the profile conversion file prfexp_cis.cnv:

```
! US Imperial Flavor
! Profile name conversion Tekla Structures -> CIS
!
! If Converted-name does not exist, it will be
! the same as Tekla Structures-name.
! Tekla Structures-name Converted-name
!
!American Sections - Imperial
!W - Wide Flange Beams
W44X335 S\SECT\US\W44X335\ASTM_A6\1994
W44X290 S\SECT\US\W44X290\ASTM_A6\1994
W44X262 S\SECT\US\W44X262\ASTM_A6\1994
```

Converted-name contains the following information, and items are separated by a backslash (\):

- S (fixed value)
- SECT (fixed value)
- Name of the standardization organization
- Standard name of the profile shape
- Name of the standard
- Year of the standard

If the conversion file does not contain the relevant profile type, the Tekla Structures name of the profile is used. Tekla Structures also uses the standardization organization, standard name and year of standard defaults given on the Standards tab.

Example 2

This example shows part of the material conversion file matexp_cis.cnv:
US Imperial Flavor
Material name conversion Tekla Structures -> CIS

If Converted-name does not exist, it will be the same as Tekla Structures-name.
Tekla Structures-name Converted-name

Carbon Structural Steel (ASTM_A36\1994)
GRADE32 S\MAT\US\GRADE32\ASTM_A36-94\1994
GRADE36 S\MAT\US\GRADE36\ASTM_A36-94\1994
#High Strength Carbon Manganese Steel (ASTM_A529\1994
GRADE42 S\MAT\US\GRADE42\ASTM_A529-94A\1994)

Converted-name contains the following information, and items are separated by a backslash (\):
 • S (fixed value)
 • MAT (fixed value)
 • Name of the standardization organization
 • Standard name of the material
 • Name of the standard
 • Year of the standard

Converted-name contains the following information about bolts, nuts, and washers, separated by two colon characters (::):
 • Name of the standards organization
 • Name of the standard
 • Year of the standard
 • Standard name of the bolt, washer, or nut

Tekla Structures names for bolts, washers, and nuts are constructed from their fastener standard, fastener type and size.

If the conversion file does not contain an equivalent profile name, Tekla Structures uses the name of the material.

See also
Export to a CIMSteel design/manufacturing model (page 159)
Conversion files (page 31)
You can export model data to Manufacturing Information Systems (MIS). The MIS export supports the following formats:

- DSTV
- FabTrol / KISS
- EJE
- EPC
- Steel 2000

NOTE We recommend using the FabTrol reports instead of the MIS export for exporting FabTrol data. The FabTrol reports are available for the Steel Detailing role in the US imperial and US metric environments. If you do not use a suitable environment you may also contact your local support for the FabTrol files.

See also

- Export a MIS list (page 163)
- Information on MIS file types (page 164)

19.1 Export a MIS list

You can export an MIS list to a file.

1. On the **File** menu, click **Export --> MIS**. The **Export MIS** dialog box opens.
2. Select the file type from the **MIS type** list.
3. If you selected **Fabtrol/KISS** or **Steel 2000**, define the additional options:
• **Fabtrol/KISS**
 Enter the customer name in the **Customer name** box.

Select the **Full material list** check box to add labor-related information to the list (for example, holes, welds, cambers, preliminary marks).

• **Steel 2000**
 Select the **Export only shop bolts** check box to include only workshop bolts in the list file.

4. Enter a name for the list file in the **MIS list file** box.

 By default, the list file is saved in the model folder.

 You can select the folder where you want to save the list file by clicking **Browse**.

5. Ensure that you have the selection switch **Select objects in components** selected. If you have the switch **Select assemblies** selected, Tekla Structures will create empty files.

6. Click **Create all** or **Create selected** to export the MIS list file.

 See also

 Information on MIS file types (page 164)

19.2 Information on MIS file types

See below for information on MIS file types.

• **DSTV**
 The exported file contains the MIS information written in the DSTV format.

• **EJE**
 US Imperial version only.

 Structural Material Manager internally stores all dimensions in sixteenths. Its External Data Interface writes all dimensions, such as widths and lengths, except for Beam and Channel descriptions, in sixteenths of an inch.

 As an example the length 12'-8 7/8 is equivalent to 2446 sixteenths, which is calculated as (feet * 192) + (inches * 16) + (eighths * 2) = (12 * 192 + 8 * 16 + 7 *2).

• **EPC**
 The EPC (Estimating and Production Control) module of SDS/2 requires multinumbering to be active.
You can import fabrication status information for parts to a Tekla Structures model from an XML file written by FabTrol.

FabTrol is a Material Resource and Planning (MRP) system commonly used by steel fabricators to manage estimating, inventory and production. Data can be written to FabTrol via a KISS format export or directly via the text based reports from Tekla Structures for tracking of the assembly status through the project lifecycle. The tracking information entered in FabTrol can then be re-imported back to Tekla Structures via the FabTrol XML import for colorization of the model. This is performed by storing the data in a preset collection of user-defined attributes (UDAs). Import of the FabTrol XML is possible in all configurations of Tekla Structures (including Project Viewer) but data can only be saved into the UDAs in modeling or management configurations.

You need to have the XMLTrans.trn file in the ..\ProgramData\Tekla Structures\<version>\environments\<environment>\system folder. This file maps the FabTrol XML names to Tekla Structures UDA names.

See also
Import a FabTrol XML file (page 165)

20.1 Import a FabTrol XML file

1. On the File menu, click Import --> FabTrol XML.
2. Click the ... button next to the Input file box to browse for the XML file.
3. Select an appropriate option from the Create log file list:
 - Select Create to write a new log file and delete the previous log file each time you import the XML file.
 - Select Append to add the log file information at the end of the existing log file.
 - If you do not need a log file, select No.
4. Select an appropriate option from the **Display log file** list:
 • If you do not want to display the log file, select **No**.
 • To display the log file, select **On** dialog.

5. Click **Create** to import the status information.

See also

FabTrol XML (page 165)
NC (Numerical Control) refers to a method where machine tool operations are controlled with a computer. The NC data controls the motion of CNC (computer numerical control) machine tools. During the manufacturing process a machine tool or machining center drills, cuts, punches or shapes the piece of material.

After you have finished detailing a Tekla Structures model, you can export the NC data as NC files from Tekla Structures to be used by CNC machine tools. Tekla Structures transforms the part length, hole positions, bevels, notches, and cuts into sets of coordinates that the machine tools can use to create the part in a shop. In addition to the CNC machine tools, the NC files can also be used by MIS and ERP software solutions.

Tekla Structures produces NC files in DSTV format. Tekla Structures can also produce NC files in DXF format by converting DSTV files to DXF files.

The data for the NC files comes from the Tekla Structures model. We recommend that you complete detailing and create drawings before producing the NC files.

<table>
<thead>
<tr>
<th>To</th>
<th>Click the links below to find out more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produce NC files in DSTV format. You can select the information to be included in NC files and NC file headers, and define the desired pop-mark and contour mark settings.</td>
<td>Create NC files in DSTV format (page 170)</td>
</tr>
<tr>
<td>Check the DSTV file description. DSTV file is a text file in ASCII format. In most cases each part has its own DSTV file.</td>
<td>DSTV file description (page 168)</td>
</tr>
<tr>
<td>Define settings for NC files, folder locations, part selection, hard</td>
<td>NC file settings (page 171)</td>
</tr>
<tr>
<td>To</td>
<td>Click the links below to find out more</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>stamps, holes and cuts, AK and IK block curve radius signs, and curve detection</td>
<td>Customize NC file header information (page 182)</td>
</tr>
<tr>
<td>Customize the order in which information is displayed in an NC file, and add additional information on individual parts in the NC file header</td>
<td></td>
</tr>
<tr>
<td>Define and generate pop-marks in NC files. Pop-marks are small holes that help the shop assemble individual parts to form an assembly.</td>
<td>Create pop-marks in NC files (page 183)</td>
</tr>
<tr>
<td>Define and generate contour marking in NC files. Information on the layout and the parts that are welded together can be added to the NC files and passed on to the machine tool.</td>
<td>Create contour marking in NC files (page 187)</td>
</tr>
<tr>
<td>Create NC files in DXF format by converting DSTV files to DXF files</td>
<td>Create NC files in DXF format (page 191)</td>
</tr>
<tr>
<td>Select a correct method for cutting the end of the beams</td>
<td>Fittings and line cuts in NC files (page 189)</td>
</tr>
<tr>
<td>Create NC files for tubular hollow sections. You first need to use specific tube components to create the connections.</td>
<td>Create tube NC files (page 190)</td>
</tr>
</tbody>
</table>

21.1 DSTV file description

Tekla Structures produces NC files in DSTV format. DSTV format is an industrial standard defined by the German Steel Construction Association (Deutsche NC files)
Stahlbau-Verband). A DSTV file is a text file in ASCII format. In most cases each part has its own DSTV file.

Blocks
The DSTV file is divided into blocks that describe the content of the file.

<table>
<thead>
<tr>
<th>DSTV block</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>Start of the file</td>
</tr>
<tr>
<td>EN</td>
<td>End of the file</td>
</tr>
<tr>
<td>BO</td>
<td>Hole</td>
</tr>
<tr>
<td>SI</td>
<td>Hardstamp</td>
</tr>
<tr>
<td>AK</td>
<td>External contour</td>
</tr>
<tr>
<td>IK</td>
<td>Internal contour</td>
</tr>
<tr>
<td>PU</td>
<td>Powder</td>
</tr>
<tr>
<td>KO</td>
<td>Mark</td>
</tr>
<tr>
<td>KA</td>
<td>Bending</td>
</tr>
</tbody>
</table>

Profile types
Profile types are named according to the DSTV standard.

<table>
<thead>
<tr>
<th>DSTV profile type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I profiles</td>
</tr>
<tr>
<td>U</td>
<td>U and C profiles</td>
</tr>
<tr>
<td>L</td>
<td>L profiles</td>
</tr>
<tr>
<td>M</td>
<td>Rectangular tubes</td>
</tr>
<tr>
<td>R</td>
<td>Round bars and tubes</td>
</tr>
<tr>
<td>B</td>
<td>Plate profiles</td>
</tr>
<tr>
<td>CC</td>
<td>CC profiles</td>
</tr>
<tr>
<td>T</td>
<td>T profiles</td>
</tr>
<tr>
<td>SO</td>
<td>Z profiles and all the other types of profile</td>
</tr>
</tbody>
</table>

Part faces
Single letters in the DSTV file describe the part faces.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Part face</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>front</td>
</tr>
<tr>
<td>o</td>
<td>top</td>
</tr>
<tr>
<td>u</td>
<td>bottom</td>
</tr>
<tr>
<td>h</td>
<td>behind</td>
</tr>
</tbody>
</table>
21.2 Create NC files in DSTV format

Tekla Structures produces NC files in DSTV format. You can select the information to be included in NC files and NC file headers, and define the desired pop-mark and contour mark settings. You can also produce MIS (Manufacturing Information System) list files according to the DSTV standard.

By default, Tekla Structures creates the NC files in the current model folder. In most cases each part has its own NC file.

Limitation: The DSTV standard does not support curved beams, and therefore Tekla Structures does not create NC files for curved beams. Use polybeams instead of curved beams.

1. On the **File** menu, click **Export --> NC files**.
2. In the **NC Files** dialog box, select the check box in the **Create** column next to **DSTV for plates** and/or **DSTV for profiles**.
3. To modify the NC file settings (page 171), select an NC file settings row, and click **Edit**.
 If you want to add new NC file settings, click **Add**. This will add a new row in the **NC file settings** list, and the NC File Settings dialog box is displayed, where you can give the settings a new name.
4. In the **NC File Settings** dialog box, modify the settings on the **Files and part selection**, **Holes and cuts**, **Hard stamp** and **Advanced Options** tabs.
 You can select to create only DSTV files, MIS files, both, or DSTV files embedded in MIS files.
 Hard stamps can be created for both the main part and the secondary parts. By default, Tekla Structures creates hard stamps only for the main part. Set the advanced option XS_SECONDARY_PART_HARDSTAMP to **TRUE** to also create hard stamps for secondary parts.
5. You can enter a unique name for the settings using **Save as**. Tekla Structures saves the settings in the ..\attributes folder under the current model folder.
6. Click **OK** to save your NC file settings and to close the **NC File Settings** dialog box.
7. To select the information to be included in the **NC file header (page 182)**, click **Header**, modify the information, and click **OK**.
8. To modify the **pop-mark settings (page 183)**, click **Pop-marks**, modify the settings and click **OK**.
9. To modify the contour marking settings (page 187), click Contour marking, modify the settings and click OK.

10. In the NC Files dialog box, use the All parts or Selected parts options to select whether to create the NC files for all parts or only for the selected parts.

If you use the Selected parts option, you need to select the parts in the model.

11. Click Create.

Tekla Structures creates .nc1 files for the parts using the defined NC file settings. By default, the NC files are created in the current model folder. The filename consists of a position number and the extension .nc1.

12. Click Show NC log to create and show the log file dstv_nc.log that lists the exported parts and the parts that were not exported.

If all expected parts are not exported, check that the parts which were not exported pass all the profile type, size, hole and other limits set in the NC file settings.

For more information on contour marking, see the support article How to create contour marking for steel beams.

21.3 NC file settings

You can open the NC File Settings dialog box by clicking Add or Edit in the NC Files dialog box. Here you can define settings for NC files, folder locations, part selection, hard stamps, holes and cuts, AK and IK block curve radius signs, and curve detection.

Files and part selection tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File format</td>
<td>DSTV is the only available value.</td>
</tr>
</tbody>
</table>
| **File location** | The default folder is \DSTV_Profiles or DSTV_Plates under the current model folder.
You can define another destination folder for NC files in one of the following ways:
• You can enter the folder path in the File location box. You can also browse for the path.
For example, enter C:\NC. |
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• If you leave the field empty, the NC files will be created in the current model folder.</td>
<td></td>
</tr>
<tr>
<td>• To create the NC file in a specific folder under the current model folder, enter <folder_name>. For example, enter \MyNCFiles.</td>
<td></td>
</tr>
<tr>
<td>• You can use the model-specific advanced option XS_MIS_FILE_DIRECTORY to define the destination folder for NC and MIS files. Go to the CNC category in the Advanced Options dialog box, and enter the desired folder path for the advanced option XS_MIS_FILE_DIRECTORY. The NC files will be created in the specified folder under a folder that has the name of the current model. For example, if you define C:\NC, and the name of the current model is MyModel, the NC files will be created in the folder C:\NC \MyModel.</td>
<td></td>
</tr>
<tr>
<td>File extension</td>
<td>.nc1 is the default value.</td>
</tr>
<tr>
<td>Include revision mark to file name</td>
<td>Add a revision mark to the NC file name. The file name then includes a number indicating the revision of the file, P176.nc1 becomes P176_1.nc1, for example.</td>
</tr>
<tr>
<td>Create what</td>
<td>Select the type of files to create:</td>
</tr>
<tr>
<td>NC files</td>
<td>creates only DSTV files.</td>
</tr>
<tr>
<td>Part list</td>
<td>creates only a MIS list file (.xsr).</td>
</tr>
<tr>
<td>If you create an MIS list file, enter a name for the list in the Part list file name box. Also, you need to click the Browse button next to the Part list file location box and browse for the location where you want to save the list.</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>NC files and part list</td>
<td>creates both the DSTV files and an MIS list file.</td>
</tr>
<tr>
<td>Combined NC files and part list</td>
<td>embeds DSTV files in an MIS list file (.xsr).</td>
</tr>
<tr>
<td>Maximum size</td>
<td>The options define the maximum length, width, and height of the parts the machine tool can handle. Larger parts are sent to other machines.</td>
</tr>
<tr>
<td>Profile type</td>
<td>All profiles that are set to Yes in the Profile type list can be handled by the machine tool. Profile types are named according to the DSTV standard.</td>
</tr>
<tr>
<td>I:</td>
<td>I profiles</td>
</tr>
<tr>
<td>U:</td>
<td>U and C profiles</td>
</tr>
<tr>
<td>L:</td>
<td>L profiles</td>
</tr>
<tr>
<td>M:</td>
<td>Rectangular tubes</td>
</tr>
<tr>
<td>R:</td>
<td>Round bars and tubes</td>
</tr>
<tr>
<td>B:</td>
<td>Plate profiles</td>
</tr>
<tr>
<td>CC:</td>
<td>CC profiles</td>
</tr>
<tr>
<td>T:</td>
<td>T profiles</td>
</tr>
<tr>
<td>SO:</td>
<td>Z profiles and all the other types of profiles</td>
</tr>
<tr>
<td>By default, Tekla Structures unwraps round tubes as plate profiles and uses the plate profile type B in the NC file header data. To change this, use the advanced option XS_TUBE_UNWRAP_USE_PLATE_PROFILE_TYPE_IN_NC.</td>
<td></td>
</tr>
<tr>
<td>Maximum size of holes</td>
<td>The Maximum size of holes options define how large holes the machine tool is able to drill. The NC file is not created if a part contains larger holes or its material is thicker than the specified values. The hole size is connected to material thickness or plate thickness.</td>
</tr>
<tr>
<td>Each row contains the maximum hole diameter and the material thickness.</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Both conditions have to be met for the NC file to be created. For example, a row with the values 60 45 means that when the material thickness is 45 mm or smaller, and the hole diameter is 60 mm or smaller, the NC file is created. You can add as many rows as needed.</td>
</tr>
</tbody>
</table>

The following example shows how the **Maximum size of holes** can be defined. In this example, we have the following situation:

- Three plates of different thickness.
- Two bolt groups with equal sizes, and one bolt group with a larger size.

Maximum size of holes are defined as follows:

- **Test1** creates a folder under the model folder for the plates that meet the following criteria:
 - **Hole diameter**: 22
 - **Plate thickness**: 10

- **Test2** creates a folder under the model folder for the plates that meet the following criteria:
 - **Hole diameter**: 22
 - **Plate thickness**: 20

When you create NC files for the plates, the folder **Test1** includes the plate **PL350*10** and the folder **Test2** includes the plate **PL350*20**. The plate **PL350*15** is not included in any NC files.
The order in which you enter the criteria is important: enter the most exclusive criteria first. If you define the criteria in a different order, the results will also be different.

Holes and cuts tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner corners shape</td>
<td>The Inner corners shape option defines the shape of, for example, web notches or flange cuts at the beam end.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Inner corner shape option also affects cuts on the flange:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Inner corner shape option does not apply to rectangular openings that are located in the middle of a part:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Option 0: Radius</td>
<td>The inner corners are shaped like holes with a given radius. A separate block is not written to the NC file.</td>
</tr>
</tbody>
</table>

Option 1: **Tangential**

The corner is shaped according to the value in the **Radius** box.

Option 2: **Square**

The corner is as it is in the model.

The **Inner corner shape** option does not apply to those inner contours that are already rounded in the model. The model values remain intact.

The examples in the below show how the different inner corner shape options affect the part in the NC file. The original part in the model has flanges cut entirely and the web is notched.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 3: Drilled hole</td>
<td>A drilled hole is added to the inner corner. The hole radius is the same as the value in the Radius box. Holes are written as a separate BO block to the NC file.</td>
</tr>
<tr>
<td>Option 4: Tangential drilled hole</td>
<td>A drilled hole is added tangentially to the inner corner. The hole radius is the same as the value in the Radius box. Holes are written as a separate BO block to the NC file.</td>
</tr>
</tbody>
</table>

Distance from flange within which web is not cut

The **Distance from flange within which web is not cut** option defines the height of the flange clearance area. The clearance check only affects the **I**, **U**, **C**, and **I** DSTV profile types.

If a cut in a part is located closer to the flange than the clearance in the model, the cut points inside that clearance are moved to the border of the clearance area when the NC file is written.

The part how it is modeled. The cut goes closer to the top flange than the defined flange clearance in the NC file settings:
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>The part how it is written in the NC files. The dimension shows the clearance. The top of the original cut is moved so that the clearance area is left free. The bottom of the cut is not moved.</td>
</tr>
<tr>
<td>Machine slots as</td>
<td>The Machine slot as option defines how slotted holes are created:</td>
</tr>
<tr>
<td></td>
<td>Ignore slots: Slotted holes are not created in the NC file.</td>
</tr>
<tr>
<td></td>
<td>A single hole in the center of the slot: Drills a single hole in the center of the slotted hole.</td>
</tr>
<tr>
<td></td>
<td>Four small holes, one at each corner: Drills four smaller holes, one at each corner.</td>
</tr>
<tr>
<td></td>
<td>Internal contours: Flame-cuts the slots as internal contours.</td>
</tr>
<tr>
<td>Maximum diameter for holes to be drilled</td>
<td>The Maximum diameter for holes to be drilled option defines the maximum hole diameter. Holes and slotted holes that are larger than the maximum hole diameter are manufactured as internal contours.</td>
</tr>
</tbody>
</table>
Hard stamp tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create hard stamp</td>
<td>When selected, creates hard stamps.</td>
</tr>
<tr>
<td>Hard stamp content</td>
<td>The Elements list defines which elements are included in hard stamps and the order in which the elements appear in the hard stamp. You can also define the Text height and Case.</td>
</tr>
<tr>
<td></td>
<td>Project number: Adds the project number to the hard stamp.</td>
</tr>
<tr>
<td></td>
<td>Lot number: Adds the lot number to the hard stamp.</td>
</tr>
<tr>
<td></td>
<td>Phase: Adds the phase number to the hard stamp.</td>
</tr>
<tr>
<td></td>
<td>Part position: Prefix and position number of the part.</td>
</tr>
<tr>
<td></td>
<td>Assembly position: Prefix and position number of the assembly.</td>
</tr>
<tr>
<td></td>
<td>Material: The material of the part.</td>
</tr>
<tr>
<td></td>
<td>Finish: The type of finish.</td>
</tr>
<tr>
<td></td>
<td>User-defined attribute: Adds a user-defined attribute (user fields 1-4) to the mark.</td>
</tr>
<tr>
<td></td>
<td>Text: Opens a dialog box where you can add user-defined text to the hard stamp.</td>
</tr>
</tbody>
</table>

Including part position and/or assembly position in the hard stamp affects the NC filename:

- **Part position**: P1.nc1, P2.nc1
- **Assembly position**: A1.nc1, A2.nc1
- **Assembly and part position**: A1-P1.nc1, A2-P2.nc1

The following example shows a hard stamp that contains the elements **Phase**, **Part position**, **Material**, and **Text**.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard stamp placing</td>
<td>If you set the option By orientation mark to Yes, the default face is changed from bottom (u) to top (o) for L profiles, rectangular tubes and round bars. The Side option defines the side of the part on which the hard stamp is placed. The Position along the part and Position in depth of part options define the position of hard stamps on parts. These options move the hard stamp on the same face it is created, but they cannot move the stamp to a different face. If the face is, for example, the bottom flange, you can move the stamp to a different place on bottom flange, but not to the top flange. Default faces for different profiles: I profile: Bottom flange (u) U and C profiles: Back side of web (h) L profiles: Back (h) or Bottom (u) Rectangular tubes: Bottom flange (u) Round bars: Bottom flange (u) Circular tubes: Front (v) T profiles: Back side of web (h) Plate profiles: Front (v)</td>
</tr>
</tbody>
</table>

Advanced Options tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of decimals</td>
<td>Define the number of decimals shown in NC files.</td>
</tr>
<tr>
<td>Change external contour (AK block) radius sign on top (o) and back (h) faces</td>
<td>Change the AK block curve radius signs on top (o) and back (h) faces.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Below is an example, where the Change external contour (AK block) radius sign on top (o) and back (h) faces is not selected.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td></td>
</tr>
<tr>
<td>0.00s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>0.00 300.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>3000.00 300.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>3000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>1356.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>1356.75 115.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>1356.75 155.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>1316.75 155.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>1066.75 155.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>1046.75 115.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>Below is an example, where the Change external contour (AK block) radius sign on top (o) and back (h) faces is selected.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td></td>
</tr>
<tr>
<td>0.00s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>0.00 300.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>3000.00 300.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>3000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>1356.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>1356.75 115.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>1356.75 155.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>1316.75 155.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>1066.75 155.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>1046.75 115.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>Change internal contour (IK block) radius sign on top (o) and back (h) faces</td>
<td>Change the IK block curve radius signs for on (o) and back (h) faces.</td>
</tr>
<tr>
<td>Curve detection</td>
<td>Curve detection controls whether three points should be read as a curve instead of two straight lines.</td>
</tr>
<tr>
<td>Chord tolerance</td>
<td>When Curve detection is set to Yes, Tekla Structures checks the edges of a solid against a virtual curve described by the edges to see if the edges are curved or straight based on the Chord tolerance value. Enter the Chord tolerance value in millimeters. Curve detection is on by default.</td>
</tr>
<tr>
<td>The image below describes the chord tolerance.</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

See also
Create NC files in DSTV format (page 170)

21.4 Customize NC file header information

You can customize the order in which information is displayed in an NC file, and add additional information on individual parts in the NC file header.

1. On the **File** menu, click **Export --> NC Files**.
2. Click the **Header** button in the **NC Files** dialog box.
3. In the **NC File Header Information** dialog box, include in the **Selected elements** list the header information options that you want, and arrange the options in the desired order by selecting the option and using the **Move up** and **Move down** buttons.
4. If needed, add additional information on individual parts.
You can enter text in the **Text info on piece 1 - 4** boxes, and enter desired template attributes in double angle brackets, for example `<<WEIGHT>>` to display the weight of the part.

5. Click **OK**.

6. If you want to restore the default file header information, click the **Default** button in the **NC File Header Information** dialog box.

7. **Create the NC files (page 170).**

21.5 Create pop-marks in NC files

Pop-marks are small holes that help the shop assemble individual parts to form an assembly. Tekla Structures is able to write the pop-mark information in NC files to help position parts that will be manually welded to the assembly main part. Pop-marks are usually made using a drilling machine that drills a small hole in the surface of the material.

Limitation: Tekla Structures pop-marking does not work with polybeams. Tekla Structures only creates pop-marks for parts for which you have defined pop-mark settings. You can save the pop-mark settings in a `.ncp` file, which Tekla Structures saves by default in the `..\attributes` folder under the current model folder.
NOTE Pop-marking affects numbering. For example, if two parts have different pop-marks, or one part has pop-marks and the other one does not, Tekla Structures gives the parts different numbers.

1. On the File menu, click Export --> NC files.
2. In the NC Files dialog box, select the parts for which you want to create the pop-marks by selecting the corresponding check boxes in the Pop-marks column.
3. Click the Pop-marks button.
4. In the Pop-Mark Settings, click Add to add a new row.
5. To define which parts are pop-marked and where the pop-marks are created, enter or select information for each item on a row.

The order of the rows in the Pop-Mark Settings dialog box is important. Enter the most limiting definition first, and the most generic one last.

First define the pop-mark settings on the Parts to pop-mark tab:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main part profile type</td>
<td>Select the main part profile type that is pop-marked. The list contains profiles according to the DSTV standard.</td>
</tr>
<tr>
<td>Main part name</td>
<td>Enter the names of the main part profiles. You can enter several part names separated by commas, for example, COLUMN, BEAM.</td>
</tr>
<tr>
<td></td>
<td>You can use wildcards (* ? []). For example, HE* matches all parts with a profile name that begins with the characters "HE".</td>
</tr>
<tr>
<td></td>
<td>Part name can contain more names separated by comma.</td>
</tr>
<tr>
<td>Sec part profile type</td>
<td>Select the secondary part profile type.</td>
</tr>
<tr>
<td>Secondary part name</td>
<td>Enter the names of the secondary part profiles. You can enter several part names separated by commas.</td>
</tr>
<tr>
<td></td>
<td>You can use wildcards (* ? []). Part name can contain more names separated by comma.</td>
</tr>
<tr>
<td>Pop-mark location</td>
<td>Select how the secondary part is projected onto the main part.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>Left side</td>
<td>The left side of the secondary part is marked on the main part. The left side is the side of the secondary part that is closest to the start point of the main part.</td>
</tr>
<tr>
<td>Right side</td>
<td>The right side of the secondary part is marked on the main part.</td>
</tr>
<tr>
<td>Both sides</td>
<td>Combines Left side and Right side.</td>
</tr>
<tr>
<td>Center</td>
<td>Center of the secondary part.</td>
</tr>
<tr>
<td>Left side holes</td>
<td>Marks the main part with the position of holes in the secondary part, on the left side of the secondary part.</td>
</tr>
<tr>
<td>Right side holes</td>
<td>Marks the main part with the position of holes in the secondary part, on the right side of the secondary part.</td>
</tr>
<tr>
<td>Both side holes</td>
<td>Combines Left side holes and Right side holes.</td>
</tr>
<tr>
<td>Middle line</td>
<td>Marks two points on the middle line of the secondary part x axis.</td>
</tr>
</tbody>
</table>

Move to flange
Select to which part of the main part flange the pop-marks are moved. The options are **None**, **Both flanges**, **Top flange**, and **Bottom flange**.

Edge distance
Enter the minimum distance from a pop-mark to the edge of the main part. Tekla Structures does not create pop-marks inside this distance.

If a pop-mark is inside the defined edge distance, Tekla Structures moves it, unless you have set **Pop-mark location** to **Center**.

Secondary pop-marks
Select whether pop-marks are created to the secondary parts.

Then define the pop-mark settings on the **Pop-marking options** tab:
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotate part if pop-marks or other items only on the back</td>
<td>First select the Pop-marks on the back check box and then one of the options.</td>
</tr>
<tr>
<td></td>
<td>Also set the Hole diameter.</td>
</tr>
<tr>
<td>Rotate part and drill through pop-marks on the back if items or more pop-marks only on the back</td>
<td></td>
</tr>
<tr>
<td>Drill through pop-marks on the back if no other items on the back</td>
<td></td>
</tr>
<tr>
<td>No pop-marks on overlapping holes</td>
<td>Select if you do not want to have pop-marks on overlapping holes.</td>
</tr>
<tr>
<td>Add pop-marks to centers of studs</td>
<td>Select to have pop-marks in the stud centers.</td>
</tr>
<tr>
<td>Show pop-marks in the model</td>
<td>Select to show pop-marks in the model.</td>
</tr>
</tbody>
</table>

6. Click **OK**.
7. Select the parts in the model.
8. **Create NC files (page 170)**.

Pop-marks are written in the **BO** block in the DSTV file as 0 mm diameter holes. If needed, pop-marks can also be displayed in drawings. In drawings, select the **on/off** check box in the part properties to display the pop-marks.

Tekla Structures displays thick red lines for each pop-mark pair in the model view which was last updated.
Examples
Tekla Structures marks the center point of all round secondary profiles on a main part, and does not create pop-marks closer than 10 mm to the main part edge.

- Tekla Structures projects the hole location in the secondary plates onto a main part.

21.6 Create contour marking in NC files
Tekla Structures is able to generate contour marking in NC files. This means that information on the layout and the parts that are welded or bolted together can be added to the NC files and passed on to the machine tool.

Limitation: Tekla Structures contour marking does not work on polybeams.

Tekla Structures only creates contour markings for parts for which you have defined contour marking settings. You can save the contour marking settings in a .ncs file, which Tekla Structures saves by default in the ..\attributes folder under the current model folder.

You can add contour marking to both the main and the secondary parts.

NOTE Contour marking affects numbering. For example, if two parts have different contour markings, or one part has contour markings and the other one does not, Tekla Structures gives the parts different numbers.

1. On the **File** menu, click **Export --> NC files**.
2. In the **NC Files** dialog box, select the parts for which you want to create the contour marks by selecting the corresponding check boxes in the **Contour marking** column.
3. Click the **Contour marking** button in the **NC Files** dialog box.
4. In the **Contour marking settings** dialog box, click **Add** to add a new row.
5. To define which parts are contour marked and how they are contour marked, enter or select information for each item on a row:
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main part profile type</td>
<td>Select the main part profile type that is contour marked. The list contains profiles according to the DSTV standard.</td>
</tr>
<tr>
<td>Main part name</td>
<td>Enter the name for the main part profiles. You can enter several part names separated by commas, for example, COLUMN, BEAM.</td>
</tr>
<tr>
<td></td>
<td>You can use wildcards (* ? []). For example, HE* matches all parts with a profile name that begins with the characters "HE".</td>
</tr>
<tr>
<td></td>
<td>Part name can contain more names separated by comma.</td>
</tr>
<tr>
<td>Sec part profile type</td>
<td>Select the secondary part profile type. The list contains profiles according to the DSTV standard.</td>
</tr>
<tr>
<td>Sec part name</td>
<td>Enter the name for the secondary part profiles. You can enter several part names separated by commas.</td>
</tr>
<tr>
<td></td>
<td>You can use wildcards (* ? []). Part name can contain more names separated by comma.</td>
</tr>
<tr>
<td>Secondary contour marking</td>
<td>Select whether the secondary parts are contour marked.</td>
</tr>
<tr>
<td>Punch or powder</td>
<td>In the list, select how the part is contour marked:</td>
</tr>
<tr>
<td></td>
<td>• Punch: The part is punched.</td>
</tr>
<tr>
<td></td>
<td>• Powder: The part is marked with powder.</td>
</tr>
<tr>
<td></td>
<td>• Both: Both techniques are used.</td>
</tr>
<tr>
<td>Hard stamp</td>
<td>Select whether hard stamps are created.</td>
</tr>
<tr>
<td>Mark parts welded on site</td>
<td>Select whether you want to mark parts that are welded on site.</td>
</tr>
<tr>
<td>Edge distance</td>
<td>Define the minimum distance from a contour mark to the edge of the main part. Tekla Structures not create contour marks inside this distance.</td>
</tr>
</tbody>
</table>

6. Click **OK**.
7. **Create NC files (page 170).**
Contour marking is written in the PU and KO blocks in the DSTV file. Tekla Structures displays contour marking as thick magenta lines in the model view.

21.7 **Fittings and line cuts in NC files**

When creating NC files in DSTV format, the method you use to cut the end of the beam affects the beam length in the NC file.

- **Fittings** affect the length of the beam in the NC file.
- **Line cuts** do not affect the length of the beam in the NC file.

When you cut the beam end, use the fitting method to make sure that the beam length is correct in the NC file.

The overall length of a beam will be the fitted net length of the beam. This means that Tekla Structures always takes the fitting into account when calculating the beam length.

For lines, polygons, or part cuts, the cut does not affect beam length, but the overall length in the NC file will be the gross (initially modeled) length of the beam.
1. Fitting
2. Line cut
3. Polygon or line cut
4. Fitting

Shortest length

If you want to use the shortest possible length in an NC file, use the advanced option XS_DSTV_NET_LENGTH.

Net and gross length

If you want to include both net and gross length into NC file header data, use the advanced option XS_DSTV_PRINT_NET_AND_GROSS_LENGTH.

See also

Create NC files in DSTV format (page 170)

21.8 Create tube NC files

You can create NC files for tubular hollow sections. You first need to use specific tube components to create the connections.

Create the following tube-to-tube and tube-to-plate connections:

- Tube-Chamfer
- Tube-CrossingSaddle
- Tube-MitreSaddle+Hole
- Tube-Saddle+Hole
- Tube-SlottedHole
After using the components, you can create an NC file for data export. The tube NC file creation results into an XML file which includes the model data.

Limitations:

To get the correct tube NC export results, note the following limitations:

- Part cuts and polygon cuts are not supported, and they will not be exported.
- Line cuts and fittings created manually or by other components will be exported as simple chamfers.
- Holes created by bolts are not supported, and they will not be exported.

1. On the **File** menu, click **Export --> Tube NC files**.
2. In the **Tube NC Files** dialog box, enter a name for the export file, and browse for the location where you want to save the file. By default, the file is saved in the model folder.
3. Select whether you want to create the file for selected parts or for all parts.
4. Click **Create**.

 Tekla Structures creates an XML file and a log file in the location you defined.

21.9 Create NC files in DXF format

You can create NC files in DXF format by converting DSTV files to DXF files. Before running a DXF conversion, you must first create the NC files in DSTV format.

tekla_dstv2dxf_<env>.def file description

The `tekla_dstv2dxf_<env>.def` file is used when converting from the DSTV to the DXF format using the `tekla_dstv2dxf.exe`. It contains all the necessary conversion settings. The .def file is located in the `..\Tekla Structures\<version>\nt\dstv2dxf` folder.

The **DSTV to DXF conversion (page 191)** settings are described below.

Environment settings [ENVIRONMENT]

INCLUDE_SHOP_DATA_SECTION=FALSE

Specify whether to include a special data section in the DXF file to allow the DXF file to be better imported into CNC software written by Shop Data Systems. Including this special data section in the DXF file makes the DXF file unreadable by AutoCAD.
Options: TRUE, FALSE

NO_INFILE_EXT_IN_OUTFILE=TRUE
Use to add the input file extension to the output file.
Options:
TRUE: p1001.dxf
FALSE: p1001.nc1.dxf

DRAW_CROSSHAIRS=HOLES
Draw crosshair for holes and slotted holes.
Options: HOLES, LONG_HOLES, BOTH, NONE

HOLES:

![HOLES Icon]

LONG_HOLES:

![LONG_HOLES Icon]

BOTH:

![BOTH Icon]

NONE:

![NONE Icon]

SIDE_TO_CONVERT=FRONT
Define which side of the member to convert.
Options: FRONT, TOP, BACK, BELOW

Defines which part face is shown in the DXF file. This setting is originally designed for plates.

FRONT is the most typical option. Sometimes you may need another rotation for a plate, and then you can try if changing this setting to BACK would help. In addition to the SIDE_TO_CONVERT setting, it requires that the NC files are created with the advanced option XS_DSTV_WRITE_BEHIND_FACE_FOR_PLATE set to TRUE, which will include the back side data of a plate in the NC file.

OUTPUT_CONTOURS_AS=POLYLINES

Convert contours as polylines or lines and arcs.

Options: POLYLINES, LINES_ARCS

NOTE If you set OUTPUT_CONTOURS_AS=LINES_ARCS:

- Slotted holes may sometimes have a gap/offset between a straight line and an arc.
- Sometimes a 3D DXF is produced instead of a 2D DXF.

If you set OUTPUT_CONTOURS_AS=POLYLINES, the DXF file may not be correct if the NC is created with the Inner corner=0 setting.

CONTOUR_DIRECTION=REVERSE

Define the contour direction. This option changes the coordinates of the vertices, and the order they are written. You can see the difference if you open the DXF file in a text editor: "reverse" is clockwise and "forward" is counter-clockwise.

Options: REVERSE, FORWARD

CONTOUR_DIRECTION only works if you have set OUTPUT_CONTOURS_AS=POLYLINES. If you have set it to use LINES_ARCS, the output is always FORWARD (counter-clockwise).

CONVERT_HOLES_TO_POLYLINES=TRUE

Convert holes to polylines.

Options: TRUE, FALSE

MAX_HOLE_DIAMETER_TO_POINTS=10.0

Convert small holes to points in the DXF file.

When you set MAX_HOLE_DIAMETER_TO_POINTS to a value, the holes with a diameter smaller than this value will follow the HOLE_POINT_SIZE and HOLE_POINT_STYLE settings. With this kind of point visualization, the hole symbols will no longer show if a hole is bigger or smaller than the other one, but they will all have the same size.

HOLE_POINT_STYLE=33 and HOLE_POINT_SIZE=5
Point style and size for holes.

1 is a circle, but this setting is not in use
2 is +
3 is X
4 is short line
33 is circle
34 is a circle with +
35 is a circle with X
36 is a circle with short line

SCALE_DSTV_BY=0.03937
Use 0.03937 to scale to imperial units.
Use 1.0 to scale to metric units.

ADD_OUTER_CONTOUR_ROUNDINGS=FALSE
Add holes to roundings. This only affects the roundings that are created using the **Inner corner shape = 1** setting in the **NC File Settings** dialog box on the **Holes and Cuts** tab. The hole size information is coming to the DSTV file from the **Radius** value in the **NC File Settings** dialog box, and you cannot adjust the hole size in the dstv2dxf converter.
Options: TRUE, FALSE

ADD_OUTER_CONTOUR_ROUNDINGS=FALSE:

ADD_OUTER_CONTOUR_ROUNDINGS=TRUE:

MIN_MATL_BETWEEN_HOLES=2.0
Define how close the holes can be to each other in slotted hole conversion.

INPUT_FILE_DIR= and OUTPUT_FILE_DIR=
Folders for input and output files.
DEBUG=FALSE
Show data processing in the DOS window.
Options: TRUE or FALSE

Text specifications [TEXT_SPECS]

TEXT_OPTIONS=PQDG
Define the text options that you want to use in the DXF file:
S adds a side mark (Side: v)
P adds a part mark (Part: P/1)
B adds a part mark and side mark (Part: P/1 Side: v)
Q adds the quantity (Quantity: 5)
G adds the steel grade (Material: A36)
T adds the thickness (Thickness: 3)
D adds the profile description (Desc: FL5/8X7)

TEXT_POSITION_X=30.0 and TEXT_POSITION_Y=30.0
The X/Y location of lower-left corner of first line of text from the origin point <0,0> of the DXF file.

TEXT_HEIGHT=0.0
TEXT_HEIGHT is not used, the text height is always 10.0, also in text layers.

Text item prefixes
You can define several different prefixes for text items. The prefix is only written in the file if the option CONCATENATE_TEXT is set to 0.

You can use the following prefix definitions:
- **PART_MARK_PREFIX=**Part:
- **SIDE_MARK_PREFIX=**Side:
- **STEEL_QUALITY_PREFIX=**Material:
- **QUANTITY_PREFIX=**Quantity:
- **THICKNESS_PREFIX=**Thickness:
- **DESCRIPTION_PREFIX=**Desc:

CONCATENATE_TEXT=1
Combine text items (part mark, quantity, profile, grade) into one or two lines.

Options:
0: Text lines are not combined. Prefixes work only with this option.
1: Part mark text on one line, other texts combined on another line.
2: All text on one line.

CONCATENATE_CHAR=+
Define a separator of max 19 characters for the text items.

Examples of different text specifications
The following settings are used the example below:

```
TEXT_OPTIONS=PQDG
TEXT_POSITION_X=30.0
TEXT_POSITION_Y=30.0
TEXT_HEIGHT=0.0
PART_MARK_PREFIX=Part:
SIDE_MARK_PREFIX=Side:
STEEL_QUALITY_PREFIX=Material:
```
The following settings are used for the example below: TEXT_OPTIONS=B, CONCATENATE_TEXT=0:

<table>
<thead>
<tr>
<th>Entity</th>
<th>Layer Name</th>
<th>Color</th>
<th>Text Height</th>
<th>Output as</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXT</td>
<td>TEXT</td>
<td>7</td>
<td>Not used, always the same as the general text height definition 10.0.</td>
<td></td>
</tr>
<tr>
<td>OUTER_CONTOUR</td>
<td>CUT</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INNER_CONTOUR</td>
<td>CUTOUT</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART_MARK</td>
<td>SCRIBE</td>
<td>3</td>
<td>Do not set a value for this option. If you set one, the</td>
<td></td>
</tr>
<tr>
<td>Entity</td>
<td>Layer Name</td>
<td>Color</td>
<td>Text Height</td>
<td>Output as</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PHANTOM</td>
<td>LAYOUT</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS_POP_PMARK</td>
<td>NS_POP_MARK</td>
<td>5</td>
<td></td>
<td>POP_CIRCLE</td>
</tr>
<tr>
<td>FS_POP_PMARK</td>
<td>FS_POP_MARK</td>
<td>6</td>
<td>1.0</td>
<td>POP_CIRCLE</td>
</tr>
</tbody>
</table>

This ‘1.0’ is the diameter of the hole used for far side pop marks. It must match the value in the “drill thru” option in the machinex.ini file.

Color table

1 = red
2 = yellow
3 = green
4 = cyan
5 = blue
6 = magenta
7 = white
8 = dark grey
9 = light grey

Hole layers [HOLE_LAYERS]

<table>
<thead>
<tr>
<th>Layer Name</th>
<th>Min Diam</th>
<th>Max Diam</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>8.0</td>
<td>10.31</td>
<td>7</td>
</tr>
<tr>
<td>P2</td>
<td>10.32</td>
<td>11.90</td>
<td>7</td>
</tr>
<tr>
<td>P3</td>
<td>11.91</td>
<td>14.0</td>
<td>7</td>
</tr>
</tbody>
</table>

NC files 198 Create NC files in DXF format
Slot layers [SLOT_LAYERS]

The type and color affect the symbol, but the color of the slot outline or arrow (phantom) is defined by the PHANTOM layer definition in the MISC_LAYERS definition.

<table>
<thead>
<tr>
<th>Layer Name</th>
<th>Min Dia m</th>
<th>Max Dia m</th>
<th>Min 'b'</th>
<th>Max 'b'</th>
<th>Min 'h'</th>
<th>Max 'h'</th>
<th>Typ e</th>
<th>Colo r</th>
<th>Phantom</th>
</tr>
</thead>
<tbody>
<tr>
<td>13_16x1</td>
<td>20.6</td>
<td>20.6</td>
<td>4.75</td>
<td>4.78</td>
<td>0.0</td>
<td>0.02</td>
<td>3</td>
<td>3</td>
<td>PHANTOM_O UTLINE</td>
</tr>
<tr>
<td>13_16x1-7_8</td>
<td>20.6</td>
<td>20.6</td>
<td>26.9</td>
<td>26.9</td>
<td>0.0</td>
<td>0.02</td>
<td>3</td>
<td>3</td>
<td>PHANTOM_O UTLINE</td>
</tr>
</tbody>
</table>

Below there are three examples with different phantom types. The other settings used are Slot type=1, HOLE_POINT_STYLE=33 and HOLE_POINT_SIZE=1

PHANTOM_ARROW:

PHANTOM_BOTH:

PHANTOM_OUTLINE:

PHANTOM_NONE:

For an explanation of the “b” and “h” dimensions, see the image below:
Examples of slot types

These example use different slot types, but the other setting are the same:

- Slot layer color is 3 (green).
- Hole layer color is 6 (magenta).
- Phantom layer color is 1 (red).
- Slot layer phantom type: PHANTOM_OUTLINE
- Hole point settings: HOLE_POINT_STYLE=35, HOLE_POINT_SIZE=10

<table>
<thead>
<tr>
<th>Slot type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOT_TYPE_1</td>
<td>One hole symbol to the center of slot. The hole symbol follows the HOLE_POINT_STYLE and HOLE_POINT_SIZE settings. The slot symbol is created according to the selected phantom setting (PHANTOM_OUTLINE in this example). The circle color follows the slot layer color, and the slot color follows the phantom layer color.</td>
</tr>
<tr>
<td>SLOT_TYPE_2</td>
<td>Two hole symbols to the slot. The hole symbol follows the HOLE_POINT_STYLE and HOLE_POINT_SIZE settings. The slot symbol is created according to the selected phantom setting (PHANTOM_OUTLINE in this example). The hole symbol color follows the hole layer color, and the slot color follows the phantom layer color.</td>
</tr>
<tr>
<td>SLOT_TYPE_3</td>
<td>One circle to the center of slot. The size of the circle corresponds to the real hole size. The circle color follows the slot layer color, and the slot color follows the phantom layer color. The slot symbol is created according to the selected phantom setting (PHANTOM_OUTLINE in this example).</td>
</tr>
</tbody>
</table>

NC files 200 Create NC files in DXF format
<table>
<thead>
<tr>
<th>Slot type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOT_TYPE_4</td>
<td>Two circles to the slot. The size of the circle corresponds to the real hole size. If the circles would be touching each other, only one circle in the middle of slot is created. The slot symbol is created according to the selected phantom setting (PHANTOM_OUTLINE in this example). The circle color follows the hole layer color, and the slot color follows the phantom layer color.</td>
</tr>
<tr>
<td>SLOT_TYPE_5</td>
<td>Hole symbol to the first slot center point. The hole symbol follows the HOLE_POINT_STYLE and HOLE_POINT_SIZE settings. The slot symbol is created according to the selected phantom setting (PHANTOM_OUTLINE in this example). The hole symbol color follows the hole layer color, and the slot symbol color follows the phantom layer.</td>
</tr>
<tr>
<td>SLOT_TYPE_6</td>
<td>One circle to the first slot center point. The slot symbol is created according to the selected phantom setting (PHANTOM_OUTLINE in this example). The circle color follows the hole layer color, and the slot symbol color follows the phantom layer color.</td>
</tr>
<tr>
<td>SLOT_TYPE_7</td>
<td>No hole symbol is created. The slot symbol is created according to the selected phantom setting (PHANTOM_OUTLINE in this example). The slot color follows the slot layer color.</td>
</tr>
</tbody>
</table>

21.10 Create NC files in DXF format using Convert_DSTV2DXF

You can convert the created NC files in DXF format by using the Convert_DSTV2DXF macro.

Limitation: The macro has been designed for simple plates. Therefore it may not give correct conversion results for beams, columns and bent polybeams.

1. Create the NC files in the DSTV format.
2. Click the **Applications & components** button in the side pane to open the **Applications & components** catalog.

3. Click the arrow next to **Applications** to open the applications list.

4. If **Convert_DSTV2DXF** is not visible in the **Applications** list, select the **Show hidden items** check box at the bottom of the **Applications & components** catalog.

5. Double-click **Convert_DSTV2DXF** to open the **Convert DSTV Files to DXF** dialog box.

6. Browse for the folder that contains the NC files you want to convert to DXF files.

7. Select the NC files and click **Open**.

 Tekla Structures automatically creates an **NC_dxf** folder in the model folder and the DXF files are created there.

 If you want to check the converted DXF files, select **Yes** in the dialog box that appears after the DXF files have been created. The DXF files open in **Tekla DWG Viewer**.

21.11 Create NC files in DXF format using tekla_dstv2dxf.exe

You can use a separate Tekla Structures program **tekla_dstv2dxf.exe** to convert the DSTV files to DXF format. Only one side of a part (front, top, back or bottom) is written to the file, and therefore this export format is most suited to plates.

The program is located in the ..\Tekla Structures\<version>\nt\dstv2dxf folder.

1. Create a folder for the NC files, for example `c:\dstv2dxf`.

 Do not use spaces is the folder path. You should not save the files, for example, in the Tekla Structures folder under the \Program Files folder, because the folder path contains spaces.

2. **Copy all files from** `C:\Program Files\Tekla Structures\<version>\nt\dstv2dxf` **to the folder you created** (`C:\dstv2dxf`).

3. **Create DSTV files and save the files in the in the folder you created** (`C:\dstv2dxf`).

4. **Double-click a suitable** `dstv2dxf_conversion.bat` **file.**
The program converts the files to DXF format in the same folder. If you need to adjust the conversion settings (page 191), modify the settings in an appropriate tekla_dstv2dxf_<env>.def file and restart the conversion.

The conversion file description pdf files can be found in the same folder as the tekla_dstv2dxf.exe program.
HMS stands for Hollowcore Manufacturing System and it is developed in the Netherlands. You can export data of hollow core slabs from Tekla Structures to HMS. HMS uses the data in manufacturing processes.

Click the links below to find out more:
- Export to the HMS format (page 204)
- HMS Export settings (page 205)

22.1 Export to the HMS format

You can export model data of hollow core slabs to a HMS format. The result is a `.sot` file.

1. Select the model objects that you want to include in the export.
2. On the **File** menu, click **Export --> HMS**.
 - The **HMS Export** dialog box opens.
3. Define the export properties (page 205) as required.
4. Click the `...` button to browse for the folder where you want to save the file.
 - The `\HMS` folder under the model folder is the default.
5. Enter a name for the file.
 - The file name extension is `.sot`.
6. Click **Save**.
7. Select the **Add revision to file name** check box and select the revision number if required.
 - The revision number is added to the HMS export file as follows:
 - `hms_export_file<revision>.sot`
8. Select the **Open log file after export** check box if you want to see the log after export.

 HMS Export creates the log file in the file export folder.

9. Click **Export** to create the HMS export file.

See also

HMS Export settings (page 205)

22.2 HMS Export settings

You can include project data, slab data, and steel part information in the HMS export.

Project data tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Name</td>
<td>You can include project data, such as customer name and site address, in the HMS export file.</td>
</tr>
<tr>
<td>Customer Number</td>
<td>The boxes have the following values available:</td>
</tr>
<tr>
<td>Contractor Name</td>
<td>• Empty The item is not included in the HMS export file.</td>
</tr>
<tr>
<td>Site Address</td>
<td>• Text Enter the text in the box next to the item.</td>
</tr>
<tr>
<td>Site City</td>
<td>• Project UDA The data comes from the project's user-defined attributes.</td>
</tr>
<tr>
<td>Section Name</td>
<td>• Project Object, Project Address, Project Info 1 - 2 The data comes from the project information.</td>
</tr>
<tr>
<td>Project Status</td>
<td></td>
</tr>
<tr>
<td>Remark 1</td>
<td></td>
</tr>
<tr>
<td>Remark 2</td>
<td></td>
</tr>
<tr>
<td>Remark 3</td>
<td></td>
</tr>
</tbody>
</table>

Export file

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Define a name and location for the export file. The file name extension is .sot. By default, the export file goes to the \HMS folder under model folder.</td>
</tr>
</tbody>
</table>
Add revision to file name

Add the revision number to the HMS export file:
```
hms_export_file<revision>.sot
```

Open log file after export

Open the log file after export. HMS Export creates the log file in the file export folder.

Slab data tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Number</td>
<td>Assigned Control Number (ACN) is the only option.</td>
</tr>
<tr>
<td>Slab Remarks</td>
<td>The options are:</td>
</tr>
<tr>
<td>Element Type</td>
<td></td>
</tr>
<tr>
<td>End Label</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Empty</td>
</tr>
<tr>
<td></td>
<td>The item is not included in the HMS export file.</td>
</tr>
<tr>
<td></td>
<td>• Text</td>
</tr>
<tr>
<td></td>
<td>Enter the text in the box next to the item.</td>
</tr>
<tr>
<td></td>
<td>• UDA</td>
</tr>
<tr>
<td></td>
<td>The data comes from the project's user-defined attributes</td>
</tr>
<tr>
<td>Slab Name</td>
<td>The options are:</td>
</tr>
<tr>
<td></td>
<td>• Profile</td>
</tr>
<tr>
<td></td>
<td>Select to export the whole profile name.</td>
</tr>
<tr>
<td></td>
<td>• Thickness</td>
</tr>
<tr>
<td></td>
<td>Select to export only the profile height.</td>
</tr>
<tr>
<td>Slab Mark</td>
<td>The options are:</td>
</tr>
<tr>
<td></td>
<td>• Assembly position</td>
</tr>
<tr>
<td></td>
<td>Select to export the complete cast unit position.</td>
</tr>
<tr>
<td></td>
<td>• Assembly serial number</td>
</tr>
<tr>
<td></td>
<td>Select to export the cast unit serial number only.</td>
</tr>
<tr>
<td>Slab Weight Units</td>
<td>Select the weight unit.</td>
</tr>
</tbody>
</table>

HMS Export settings
Live/dead load

Enter the default live/dead load to be exported.

For hollow core slab calculation, you can define a default live load/ dead load (KN/m²) for slabs. If you do not define this data here, you must enter the default values for each slab in HMS software later.

Slab scope tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclude parts</td>
<td>Enter the class of the model object, the name, a text, a UDA or a template in the box to exclude the data.</td>
</tr>
<tr>
<td>Hook Points</td>
<td></td>
</tr>
</tbody>
</table>
| Electric boxes | • **Empty**
| | The item is not included in the HMS export file. |
| Weld plate | • **Name**
| | Select to include the name. |
| Solid fill | • **Text**
| | Enter the text in the box next to the item. |
| Filled area | • **Class**
| | Enter the class of the model object in the box to include the data. |
| | • **UDA**
| | The data comes from the user-defined attributes. |
| | • **Template**
| | The data comes from a template. |
| Hook point name | Select to include hook point name in export. |
| Weld plate name | Select to include weld plate name in export. |

Options tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export Hook Box</td>
<td>Select to include hook data.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Export HP name</td>
<td>Select to export hook point names. If you do not select this option, only the XY coordinates are exported.</td>
</tr>
<tr>
<td>Export inner cores</td>
<td>Select to include detailed information on hollow cores in export.</td>
</tr>
<tr>
<td>Include full cut to contour</td>
<td>Select to include in export full cut in the contour block (CO). If not selected, the full cut is written as an individual cut (SP).</td>
</tr>
<tr>
<td>Exclude strands from export</td>
<td>Select to exclude strands from export.</td>
</tr>
<tr>
<td>Export strand code</td>
<td>Select to include strand code in export.</td>
</tr>
</tbody>
</table>

See also

Export to the HMS format (page 204)
Elematic ELiPLAN is a software for resource planning, scheduling, and management for precast concrete fabricators.

ELiPLAN import and export automates the data transfer between Tekla Structures and ELiPLAN. The data transfer consists of four parts:

1. Exporting ELiPLAN data file from Tekla Structures.
2. Importing ELiPLAN data file into ELiPLAN.
3. Exporting ELiPLAN status data file from ELiPLAN.
4. Importing ELiPLAN status data file into Tekla Structures.

The import of an ELiPLAN data file into ELiPLAN supports the incremental approach, which means that ELiPLAN is able to create, update, and delete parts in its database. This means that precast detailers can export the most up-to-date data files whenever the Tekla Structures model has been changed.

Similar incremental support is included in the import of an ELiPLAN status data file to Tekla Structures. To keep the status and schedule data up to date in a Tekla Structures model, we recommend you update the status data regularly.

NOTE The format and contents of the ELiPLAN status data file imported to Tekla Structures differs from the data file that is exported from Tekla Structures to ELiPLAN.

See also
- Import an ELiPLAN status data file (page 209)
- Export an EliPLAN data file (page 210)

23.1 Import an ELiPLAN status data file

If you have a status data file that has been created in ELiPLAN, you can import the status and scheduling information to your Tekla Structures model.
1. On the **File** menu, click **Import --> EliPlan**.
 The **Import Eliplan status data** dialog box opens.

2. Click the ... button next to the **Import file name** box to browse for the file to be imported.

3. Click **Create**.
 Tekla Structures updates the status and schedule data for parts in the Tekla Structures model. When the data is read, a log file is displayed.
 The log file shows the parts whose data is updated correctly. It also provides information on possible problems that may have occurred. When you select a row in the log file, Tekla Structures automatically selects the corresponding part in the model. The overall status information is shown at the end of the log file.

Tekla Structures stores the actual status data in the user-defined attributes of the parts. To view the data, open the part properties dialog box, click the **User-defined attributes** button and go to the **EliPlan** tab.

See also

[ELiPLAN (page 209)](#)
[Export an EliPLAN data file (page 210)](#)

23.2 Export an EliPLAN data file

1. If needed, add EliPLAN information to the parts’ EliPLAN user-defined attributes.

2. On the **File** menu, click **Export --> EliPlan**.
 The **Export EliPlan file** dialog box opens.

3. Define the ELiPLAN export properties on the **Parameters**, **Plotter data** and **Data content** tabs.

4. Set **Scope of export** to **All**.

5. Click **Create**.
 By default, a file called *eliplan.eli* is created in the current model folder, in a .\EP_files subfolder.

See also

[ELiPLAN user-defined attributes (page 210)](#)
23.3 **EliPLAN user-defined attributes**

In addition to normal model data, you can add additional information in the user-defined attributes of the parts. The additional information can be transferred from Tekla Structures and used in ELiPLAN.

![EliPLAN user-defined attributes](image)

Product type

The product type affects how ELiPLAN considers the part dimensions length, length2, deltaL, width, height, and thickness.

To set the product type, select a suitable product type option from the list. If needed, you can override the product type value set in the dialog box:

- You can enter a value for the user-defined attribute `EP_TYPE` in the `objects.inp` file.
- You can enter a value for the user attribute `EP_TYPE` in the **Profile Catalog**.

In the **Profile Catalog** the attribute value is given as a number. The values are as follows:

- Slab = 1
- Beam = 2
- Column = 3
- Wall = 4
- Sandwich wall = 5
- Stair = 6
Product code

You have alternative ways to give the product code. The ELiPLAN export tries to define the product code in the following order:

1. You can enter a value for the product code in the ELiPLAN user-defined attributes dialog box.
2. You can enter a value for the user-defined attribute \texttt{EP_CODE} of the cast unit main part in the \texttt{objects.inp} file.
3. You can enter a value for user attribute \texttt{EP_CODE} in the Profile Catalog.
4. You can use the data conversion file to convert parametric profile names to a product code.
5. You can use the main part name as a product code.

Erection sequence

Precast parts are erected in a certain sequence. Use the sequence to help the scheduling of the production in ELiPLAN. You can give the estimated erection sequence by giving the sequence number for parts.

Ready for production

Set this option to \texttt{Yes} when the designer or detailer has finished the part and the part is ready for production. The default is \texttt{No}, which means that the data is transferred to ELiPLAN for preliminary planning only, and the part is not sent for production until the attribute is set to \texttt{Yes} and a new file is transferred to ELiPLAN.

Eliplan status data

The Eliplan status data is meant to be read-only information and used to visualize the data in a Tekla Structures model.

See also

Export an EliPLAN data file (page 210)

23.4 ELiPLAN export settings

Use the Export ELiPLAN file dialog box to control the ELiPLAN export properties.

For instructions on how to export the EliPLAN data file, see Export an EliPLAN data file (page 210).
23.5 Parameters tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of export</td>
<td>Select whether all parts or only selected parts are exported. Because of the incremental import of EliPLAN, you need to select the same parts, and some additional parts again, if needed, when exporting the next time. Otherwise EliPLAN assumes that the parts missing from the subsequent file have been deleted in the Tekla Structures model. We recommend you to always use the All option. Use the Selected option only in special cases or when you are exporting parts for the first time.</td>
</tr>
<tr>
<td>Export version number</td>
<td>Select whether IDs or GUIDs are used in the export. The use of GUID depends on the EliPLAN version. You need to check with Elematic that the latest version of EliPLAN is in use to benefit from the GUID transfer capabilities. The default is ID. All versions of EliPLAN support the use of ID.</td>
</tr>
<tr>
<td>Output file name</td>
<td>The name and location of the export file created. The default name is <code>eliplan.eli</code>. You can import this file into EliPLAN. The <code>eliplan.eli</code> file includes, among other things, material information. The accessory code, which is the material description, is in the #Materials section. The accessory code is based on the material type as follows:</td>
</tr>
<tr>
<td></td>
<td>• For concrete material the default accessory code is same as the material name.</td>
</tr>
<tr>
<td></td>
<td>• For mesh, reinforcing bars, or strands the default accessory code is `grade</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>• For embedded material the default accessory code is `name</td>
<td>size</td>
</tr>
<tr>
<td>Data conversion file</td>
<td>With this file you can convert the parametric profile names into the EliPLAN product codes, and the material descriptions into the EliPLAN accessory codes. The default file name is <code>eliplan_export.dat</code> and this file can be located in your model, <code>XS_FIRM</code> or <code>XS_PROJECT</code> folder. The data conversion file <code>eliplan_export.dat</code> contains string pairs separated with one or more tabs. The string on the left side is the profile name or Tekla Structures material description and the string on the right side is the corresponding EliPLAN data. Note that the EliPLAN codes depend on the fabricator and the codes that are valid for one fabricator are likely not valid for other fabricators. For an example of data conversion file contents, see <code>eliplan_export.dat</code> example.</td>
</tr>
<tr>
<td>List of classes to be ignored</td>
<td>A list of classes to be excluded from the export. This contains the class numbers used for concrete parts. Separate the classes with a space.</td>
</tr>
<tr>
<td>List of classes to be ignored (Material)</td>
<td>A list of classes to be excluded from the export. This contains the class numbers used for materials. Separate the classes with a space.</td>
</tr>
<tr>
<td>List of classes to be ignored (Concrete)</td>
<td>A list of classes to be excluded from the export. This contains the class numbers used for secondary concrete parts. Separate the classes with a space.</td>
</tr>
<tr>
<td>Create log file</td>
<td>Select whether a log file is created.</td>
</tr>
<tr>
<td>Log file name</td>
<td>The name and location of the created log file.</td>
</tr>
</tbody>
</table>
23.6 Plotter data tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export of cutout data</td>
<td>Select how to export cutout data. The options are:</td>
</tr>
<tr>
<td></td>
<td>• All: Exports all data.</td>
</tr>
<tr>
<td></td>
<td>• Full depth cuts only: Exports data only on the cuts that go through the whole part.</td>
</tr>
<tr>
<td></td>
<td>• None: Does not export any cutout data.</td>
</tr>
<tr>
<td></td>
<td>Overlapping cutouts are combined in the export file.</td>
</tr>
<tr>
<td>Export of embed data</td>
<td>Select how to export data of embeds. The options are:</td>
</tr>
<tr>
<td></td>
<td>• Yes: Exports data on embeds.</td>
</tr>
<tr>
<td></td>
<td>• No: Does not export any data on embeds.</td>
</tr>
<tr>
<td>Exclude cut parts by</td>
<td>Use to exclude cut parts from export based on the cut part properties.</td>
</tr>
<tr>
<td></td>
<td>You can define one or more values for the selected property.</td>
</tr>
</tbody>
</table>

23.7 Data content tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export material data</td>
<td>Select whether to include or exclude the detailed material data (receipt) of parts.</td>
</tr>
<tr>
<td></td>
<td>If you have no use for material data in EliPLAN (you have no material handling module in EliPLAN), select No to exclude the data from the file and to reduce the file size.</td>
</tr>
<tr>
<td></td>
<td>Note that once you have transferred the file with the material data (Yes) you should never switch off (No) the export of material data in subsequent exports. If you do this, the receipt is</td>
</tr>
</tbody>
</table>

ELIPLAN 215 Plotter data tab
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export rebar bending data</td>
<td>Select whether to include or exclude the detailed rebar bending information. If you do not need this data in ELiPLAN, select No to exclude the data from the file and to reduce the file size. Note that once you have transferred the file with the rebar bending data (Yes) you should never switch off (No) the export of rebar bending data in subsequent exports.</td>
</tr>
<tr>
<td>Export embed Z position</td>
<td>Select whether to include or exclude the Z level of embeds.</td>
</tr>
<tr>
<td>Unit for rebar length</td>
<td>Select the unit for the length of reinforcing bars.</td>
</tr>
<tr>
<td>No. of digits after decimal point</td>
<td>Select the number of digits after the decimal point. The default is 2 digits after the decimal point.</td>
</tr>
<tr>
<td>Tag for lifters</td>
<td>Use to identify lifting loops by their name. Enter the name of the lifting loop. When lifting loops are identified, the plotter instruction type is changed from WPL to LL.</td>
</tr>
<tr>
<td>Prefix for ID</td>
<td>Enter a prefix (letter) to use with the ID number.</td>
</tr>
<tr>
<td>Position number type</td>
<td>Select whether to export the cast unit position number, or the assigned control number (ACN).</td>
</tr>
<tr>
<td>Remove numbering separator</td>
<td>Select whether a position number separator is used in numbering. The default is No.</td>
</tr>
</tbody>
</table>
You can export reinforcement geometry to BVBS (Bundesvereinigung Bausoftware) format. The result is a text file in ASCII format. The supported version of the BVBS format is 2.0, year 2000.

You can export bent reinforcing bars, reinforcing bar groups and reinforcement meshes, which can be rectangular, polygonal, non-bent or bent, and may include cuts. The export of hooks is also supported.

Reinforcing bars that have bendings with two or more variable radius values are exported fully conforming with the BVBS specification so that radius element and leg elements are written separately. If this causes compatibility issues within your own environment and other tools using the BVBS files, you can still go back to the older way of exporting by setting the advanced option XS_BVBS_EXPORT_ARC_COMPATIBLE_TOOLDER_METHOD to TRUE in an .ini file, for example, in user.ini.

Click the links below to find out more:
Export to the BVBS format (page 217)
Reinforcing bar length calculation in BVBS export (page 224)

24.1 Export to the BVBS format

You can export reinforcement geometry to the BVBS format. The result is an ASCII file with a file name extension .abs.

1. Ensure that numbering is up to date.
2. On the File menu, click Export --> BVBS.
 The BVBS export dialog box is displayed.
3. Define the BVBS export settings (page 218):
a. On the **Parameters** tab, select which reinforcement to export, how to export drawing data, how and where to export the BVBS file or files, and which BVBS elements to export.

You can use saved selection filters to exclude reinforcement bars or meshes matching with the selected filter.

b. On the **Advanced** tab, select whether you want to make meshes out of rebars, select whether the detailed data of mesh bars is included in the exported data of the mesh, define the order of the items in the output file, and select whether the private data block is exported and select the data items for this additional block.

c. On the **Checking** tab, select whether you want to enter the required minimum and maximum cutting length of the reinforcing bars.

4. Click **Export**.

The BVBS file or files in .abs format are exported to the folder specified in the **Output file** area. You can check the export report by clicking the report link that appears at the bottom of the dialog box.

24.2 Export settings

Use the **BVBS Export** dialog box to control the BVBS export settings.

For instructions on how to export to BVBS format, see Export to the BVBS format (page 217).

24.3 Parameters tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model objects to be exported</td>
<td>Select which reinforcing bars or meshes are exported.</td>
</tr>
<tr>
<td>• Reinforcement of all cast units in the model</td>
<td>Exports reinforcing bars or meshes in all cast units in the model. If there are cast units that do not have reinforcing bars or meshes, no empty files are created.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>• Reinforcement of selected cast units</td>
<td>Exports reinforcing bars or meshes in the cast units you have selected in the model.</td>
</tr>
<tr>
<td>• Selected reinforcement only</td>
<td>Exports the reinforcing bars or meshes you have selected in the model. When you select this option, you can export only to a single file.</td>
</tr>
<tr>
<td>• Reinforcement of all cast units in the model (totals by all positions)</td>
<td>Exports reinforcing bars or meshes in all the cast units that have the same cast unit position as any of the selected cast unit positions.</td>
</tr>
<tr>
<td></td>
<td>For example, if a cast unit with the cast unit position (\text{W-120}) is selected, the reinforcing bars or meshes in all the cast units that have position (\text{W-120}) are exported even though not all of them were selected.</td>
</tr>
<tr>
<td>Excluding reinforcement by filter</td>
<td>Exclude reinforcing bars or meshes by selecting any of the selection filters. Reinforcing bars or meshes that match the filter are excluded.</td>
</tr>
<tr>
<td>Drawing name source</td>
<td>Define the drawing name used in the export. The options are:</td>
</tr>
<tr>
<td></td>
<td>Cast_unit_position</td>
</tr>
<tr>
<td></td>
<td>Drawing Name</td>
</tr>
<tr>
<td></td>
<td>Drawing Mark</td>
</tr>
<tr>
<td></td>
<td>Drawing Title1</td>
</tr>
<tr>
<td></td>
<td>Drawing Title2</td>
</tr>
<tr>
<td></td>
<td>Drawing Title3</td>
</tr>
<tr>
<td></td>
<td>Fixed text: If you select this, enter the text in Fixed drawing name.</td>
</tr>
</tbody>
</table>

BVBS 219 Parameters tab
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed drawing name</td>
<td>Enter a name to be used for the drawing in the export. This option is available only when you have selected the option Fixed text in Drawing name source.</td>
</tr>
<tr>
<td>Rev</td>
<td>Drawing revision (index). This option is available only when you have selected the option Fixed text in Drawing name source.</td>
</tr>
<tr>
<td>Single file</td>
<td>Export all BVBS information into one .abs file. Enter the file name in the box or click the ... button to browse for the file. If you do not enter a path, the file is saved in the model folder.</td>
</tr>
<tr>
<td>One file per each cast unit</td>
<td>Export each cast unit to its own file. The files are created under the folder that you define in the Folder name box, or you can browse for the folder using the ... button. Use the File naming template list to select how the created files are named. You can include revision into file name by selecting the Include revision into file name check box.</td>
</tr>
<tr>
<td>BVBS elements to be exported</td>
<td>Select which item types are exported. The options are: 2D reinforcement bars (BF2D), 3D reinforcement bars (BF3D), Sprial reinforcement coils (BFWE), Reinforcement meshes (BFMA), Lattice girders (BFGT). If you select Lattice girders (BFGT), enter the class numbers used in the model for the lattice girder bars in the Class numbers for girder box. The lattice girder may contain two or three chord bars and one or two diagonal zig-zag bars. The lattice</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>girder is exported as one item in the BVBS file.</td>
<td></td>
</tr>
</tbody>
</table>

24.4 Advanced tab

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Try to make meshes of rebars</td>
<td>Select whether the export tries to automatically form meshes of a single reinforcing bar or of a group reinforcing bars and export them as a mesh instead of separate 2D bars. The options are:</td>
</tr>
<tr>
<td></td>
<td>Yes, group rebars by class</td>
</tr>
<tr>
<td></td>
<td>Yes, group rebars by name</td>
</tr>
<tr>
<td></td>
<td>Yes, group rebars by grade</td>
</tr>
<tr>
<td></td>
<td>Yes, group rebars by UDA</td>
</tr>
<tr>
<td></td>
<td>In order to form a mesh the reinforcing bars need to belong to the same part, be straight, be on the same plane, and have equal filtering attribute values.</td>
</tr>
<tr>
<td>UDA name for grouping</td>
<td>If you selected the value Yes, group rebars by UDA for Try to make meshes of rebars, enter the UDA name for grouping.</td>
</tr>
<tr>
<td>Exporting of mesh bar data (@X..@Y..)</td>
<td>Use this option to control whether the detailed data on mesh bars is included in the exported data of the mesh. The appropriate option depends on the needs and capabilities of the receiving system. The data is needed if it will be used, for example, for mesh fabrication.</td>
</tr>
<tr>
<td></td>
<td>• Custom and cut catalog meshes only</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Detailed bar data is included only for custom meshes and catalog meshes that have additional cuts, openings or skewed edges.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>• All meshes</td>
<td>Detailed bar data is written for all meshes.</td>
</tr>
<tr>
<td>• None meshes</td>
<td>Detailed bar data is not written to any of the meshes.</td>
</tr>
<tr>
<td>Export stepped bars as separate items</td>
<td>If you select the value Yes for Exporting of mesh bar data (@X..@Y..), all tapered reinforcing bar groups are exported as multiple separate reinforcing bar items even if they have regular spacing and could be exported as one single stepped reinforcing bar item.</td>
</tr>
<tr>
<td>Sort items</td>
<td>Use this option to define the order of the items in the output files. The options are:</td>
</tr>
<tr>
<td></td>
<td>No sorting</td>
</tr>
<tr>
<td></td>
<td>By diameter, smaller size first</td>
</tr>
<tr>
<td></td>
<td>By diameter, bigger size first</td>
</tr>
<tr>
<td></td>
<td>By position number</td>
</tr>
<tr>
<td>Private data block</td>
<td>With Private data block you can control whether the private data block is exported (Export private data block) and select the data items for this additional block. Data fields can be any report properties, user-defined attributes, or object properties. Click the New button to add new predefined private data fields to the list. Enter information about the data item.</td>
</tr>
<tr>
<td></td>
<td>• Name in list</td>
</tr>
<tr>
<td></td>
<td>The text shown in the Private data block list.</td>
</tr>
<tr>
<td></td>
<td>• Field identifier</td>
</tr>
<tr>
<td></td>
<td>The field code which separates the individual data fields in the private data block. It can be any lower case letter. Typically, it is a good</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>practice to use a different value for each data item but this is not required. The receiving system may also be able to read only certain data fields.</td>
<td></td>
</tr>
</tbody>
</table>

- **Property or UDA name**
 The value defines which data will be inquired from the reinforcement object. Note that a non-existing property will be not exported.

- **Property data type**
 The value has to match the actual selected property. The options are:
 - *Report property - Integer/Float/Text*
 - *User-defined attribute - Integer/Float/Text*
 - *Open API object property*

24.5 **Checking tab**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check cutting length</td>
<td>Select whether you want to run an additional check for the Minimum cutting length and Maximum cutting length of the reinforcing bars.</td>
</tr>
</tbody>
</table>

When you select the **Check cutting length** check box, and the cutting length of the exported reinforcing bar is less than the minimum cutting length or greater than the maximum cutting length, a warning is written to the export log file.

The log file entry contains the ID number of the reinforcing bar. You can locate the reinforcing bar in the model by selecting the appropriate row in the log file. Note that the
24.6 Reinforcing bar length calculation in BVBS export

The length of the reinforcing bar is calculated according to the BVBS specification. The length also depends on the bending angle. Lengths L1 and L2 are exported.

If you set the advanced option `XS_USE_USER_DEFINED_REBAR_LENGTH_AND_WEIGHT` to `TRUE`, the user-defined length value is exported as the overall length for the reinforcing bar.

Note that the BVBS format specifications define that the overall length of the bar is ignored if the data contains actual geometry data. Some other software applications may still use the overall length values in the BVBS file for calculating quantities. The exported overall length in Tekla Structures is the same length as shown in reports.
See also

BVBS (page 217)
Export to the BVBS format (page 217)
You can export the 3D geometry of the cast units to the Unitechnik format. The result is a text file in ASCII format.

Supported versions of the Unitechnik format are:

- 6.1.0 17.9.2009
- 6.0.0 14.6.2005
- 5.2b 11.9.2000
- 5.0c 30.10.1997

You can export cast units consisting of concrete, steel and surface materials. Exporting of reinforcing bars (bent and not-bent), reinforcing bar groups and meshes with hooks is also supported. You can also export braced girders, solid, sandwich and double walls.

Example

Exported cast unit:
1. Hole
2. Steel embed
3. Reinforcing bars
4. Insulation plate (green)

For details about exporting to Unitechnik, see Export to the Unitechnik format (page 228).

For details about Unitechnik export settings, click the following links:

- Unitechnik export: Main tab (page 228)
- Unitechnik export: TS configuration tab (page 233)
- Unitechnik export: Embeds tab (page 243)
- Unitechnik export: Reinforcement tab (page 248)
- Unitechnik export: Validation tab (page 256)
- Unitechnik export: Reinf. data specification tab (page 258)
- Unitechnik export: Data specification tab (page 259)
- Unitechnik export: Mounting part data specification tab (page 261)
- Unitechnik export: Line attributes tab (page 261)
25.1 Export to the Unitechnik format
You can export the 3D geometry of the cast units to the Unitechnik format. The result is a text file in ASCII format with a file name extension .uni.

Limitation: Cast units with cast unit type cast-in-place are not exported.

1. Update numbering.
 Export Unitechnik reads and exports data from the numbering series of parts. It is important that all exported parts are numbered correctly. Incorrectly numbered parts are not exported.

2. On the File menu, click Export --> Unitechnik.
 The Export Unitechnik dialog box is displayed.

3. Define the Unitechnik export properties on the tabs:
 - Unitechnik export: Main tab (page 228)
 - Unitechnik export: TS configuration tab (page 233)
 - Unitechnik export: Embeds tab (page 243)
 - Unitechnik export: Reinforcement tab (page 248)
 - Unitechnik export: Validation tab (page 256)
 - Unitechnik export: Reinf. data specification tab (page 258)
 - Unitechnik export: Data specification tab (page 259)
 - Unitechnik export: Mounting part data specification tab (page 261)
 - Unitechnik export: Line attributes tab (page 261)
 - Unitechnik export: Pallet tab (page 265)
 - Unitechnik export: Log files tab (page 266)

4. Click Create.
 By default, .uni output files are created in the \UT_Files folder under the current model folder. The number of output files depends on the options selected in the Create from list on the Main tab, and on the total number of selected parts, cast units, or assemblies.

25.2 Unitechnik export: Main tab
Use the Main tab to control the Unitechnik export properties.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unitechnik version</td>
<td>Select the Unitechnik version.</td>
</tr>
<tr>
<td>Create from</td>
<td>Select which parts or cast units are exported.</td>
</tr>
<tr>
<td>Selected cast units</td>
<td>Only cast units that have one or more parts selected in the model are exported. Each cast unit has one output file.</td>
</tr>
<tr>
<td>All parts</td>
<td>All cast units are exported. Each cast unit has one output file.</td>
</tr>
<tr>
<td>Selected parts (separately)</td>
<td>Only the selected concrete parts (also embeds and insulation parts belonging to the selected part) are exported. Each part has one output file.</td>
</tr>
<tr>
<td>Selected parts (cast united)</td>
<td>Selected parts belonging to one cast unit are grouped and exported together in one output file.</td>
</tr>
<tr>
<td>Selected assemblies</td>
<td>All selected assemblies are exported. One assembly equals one cast unit and has one output file. Selection of subassemblies is also allowed.</td>
</tr>
<tr>
<td>Cast units in list</td>
<td>Select the cast units for export from the Cast unit position list you enter.</td>
</tr>
<tr>
<td>By cast unit Id</td>
<td>Each cast unit has its own output file.</td>
</tr>
<tr>
<td>By cast unit position</td>
<td>Identical cast units share an output file.</td>
</tr>
<tr>
<td>Parts excluded from export (classes)</td>
<td>If you do not want to export some parts, enter the classes of the parts. Parts with classes in this list will not be exported.</td>
</tr>
<tr>
<td>Directory path</td>
<td>Define where the export files are saved. The default folder is \UT_Files under the current model folder.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>File name</td>
<td>Select the name of the output file from the lists and file name extension.</td>
</tr>
<tr>
<td></td>
<td>• Proj. nr is the number of the project.</td>
</tr>
<tr>
<td></td>
<td>• Proj. name is the name of the project.</td>
</tr>
<tr>
<td></td>
<td>• CU nr is the assembly position number of the main part of the cast unit.</td>
</tr>
<tr>
<td></td>
<td>• Phase is the current phase.</td>
</tr>
<tr>
<td></td>
<td>• CU pos is the assembly position of the main part of the cast unit.</td>
</tr>
<tr>
<td></td>
<td>• ACN is the assembly control number. To generate the assembly control numbers, go to the Drawings & reports tab and click Numbering --> Assign control numbers.</td>
</tr>
<tr>
<td></td>
<td>• Part ID is the ID number, which is 10 characters long. If the ID number is not 10 characters long, zeros are added in front of the ID number to make it 10 characters long. For example, id number 456999 will be 0000456999.</td>
</tr>
<tr>
<td></td>
<td>• Counter is the amount of characters that the property can contain. For example, (5) means that the property can contain only 5 characters. If there are less than 5 characters, zeros are added in front of the property. If there are more than 5 characters, characters at the beginning of the number series are deleted.</td>
</tr>
<tr>
<td></td>
<td>• Other options are Date, Time, Date-Time, UDA, Text, Template, and Project UDA</td>
</tr>
<tr>
<td>Extension</td>
<td>The file name extension. By default it is Text and uni. You can select another option from the list.</td>
</tr>
<tr>
<td>File name mask</td>
<td>The format (length) of the output file name and file name extension. Numbers represent the length of the output string. If the name is longer than the selected option, it is cut.</td>
</tr>
<tr>
<td>Open folder after export</td>
<td>Select whether the folder where the output file is saved is opened after the export.</td>
</tr>
<tr>
<td>Output file structure</td>
<td>Structure of the exported file (slab date and layer part).</td>
</tr>
<tr>
<td></td>
<td>• Multiple layers</td>
</tr>
<tr>
<td></td>
<td>One SLABDATE block with N layers. Each cast unit has its own LAYER block. Embeds, reinforcement and insulations belong to one</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>concrete part, and they are exported to the related LAYER block.</td>
</tr>
<tr>
<td></td>
<td>\texttt{HEADER}...</td>
</tr>
<tr>
<td></td>
<td>\texttt{SLABDATE}...</td>
</tr>
<tr>
<td></td>
<td>\texttt{LAYER}...</td>
</tr>
<tr>
<td></td>
<td>\texttt{ END LAYER}__</td>
</tr>
<tr>
<td></td>
<td>\texttt{LAYER}...</td>
</tr>
<tr>
<td></td>
<td>\texttt{ END LAYER}__</td>
</tr>
<tr>
<td></td>
<td>\texttt{ END LAYER}__</td>
</tr>
<tr>
<td></td>
<td>\texttt{ END LAYER}</td>
</tr>
<tr>
<td></td>
<td>\texttt{END SLABDATE}</td>
</tr>
<tr>
<td></td>
<td>\texttt{END HEADER}...</td>
</tr>
<tr>
<td>• Single layer, 1 slabdate, 1 part</td>
<td>Each cast unit has its own SLABDATE block, no LAYER blocks.</td>
</tr>
<tr>
<td></td>
<td>\texttt{HEADER}...</td>
</tr>
<tr>
<td></td>
<td>\texttt{SLABDATE}...</td>
</tr>
<tr>
<td></td>
<td>\texttt{ END SLABDATE}</td>
</tr>
<tr>
<td></td>
<td>\texttt{SLABDATE}...</td>
</tr>
<tr>
<td></td>
<td>\texttt{ END SLABDATE}</td>
</tr>
<tr>
<td></td>
<td>\texttt{SLABDATE}...</td>
</tr>
<tr>
<td></td>
<td>\texttt{ END SLABDATE}</td>
</tr>
<tr>
<td></td>
<td>\texttt{END SLABDATE}</td>
</tr>
<tr>
<td></td>
<td>\texttt{END HEADER}...</td>
</tr>
<tr>
<td>• Single layer, n slabdate, n parts</td>
<td>Cast units with equal geometry are collected in one SLABDATE block. No LAYER or LOT blocks are defined. Embeds, reinforcement and insulation belonging to a cast unit with the same geometry are collected and exported in one SLABDATE block.</td>
</tr>
<tr>
<td></td>
<td>\texttt{HEADER}...</td>
</tr>
<tr>
<td></td>
<td>\texttt{SLABDATE}...</td>
</tr>
<tr>
<td></td>
<td>\texttt{ END SLABDATE}</td>
</tr>
<tr>
<td></td>
<td>\texttt{SLABDATE}...</td>
</tr>
<tr>
<td></td>
<td>\texttt{ END SLABDATE}</td>
</tr>
<tr>
<td></td>
<td>\texttt{END SLABDATE}</td>
</tr>
<tr>
<td></td>
<td>\texttt{END HEADER}...</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>• Single layer, 1 slabdate, n parts</td>
<td>All similar wall shells are defined within one SLABDATE block instead of being defined in a separate SLABDATE block per wall shell. The option is useful when exporting special embeds.</td>
</tr>
<tr>
<td>• Combined, n slabdate, 1 part</td>
<td>Combined export that can contain more than one cast unit.</td>
</tr>
<tr>
<td>1st exported layer</td>
<td>Select which part is exported in the first LAYER. This option allows to define which wall shell is positioned on the pallet first.</td>
</tr>
<tr>
<td>The options are:</td>
<td></td>
</tr>
<tr>
<td>• Main part (of cast unit)</td>
<td></td>
</tr>
<tr>
<td>• Biggest part</td>
<td></td>
</tr>
<tr>
<td>• Heaviest part</td>
<td></td>
</tr>
<tr>
<td>Consider layer split thicknesses</td>
<td>Select how the layers of the cast unit are exported. These options are available when you have set Output file structure to Multiple layers.</td>
</tr>
<tr>
<td>• No</td>
<td></td>
</tr>
<tr>
<td>The cast unit is exported as one volume.</td>
<td></td>
</tr>
<tr>
<td>• Yes</td>
<td></td>
</tr>
<tr>
<td>The different layers set on the Unitechnik user-defined attributes of a part are taken into consideration, and the cast unit is exported in two or three layers.</td>
<td></td>
</tr>
<tr>
<td>Blank symbol in exported file</td>
<td>Select the blank symbol to be used in the export file.</td>
</tr>
<tr>
<td>An example with "_" symbol:</td>
<td>HEADER____________________</td>
</tr>
<tr>
<td></td>
<td>005</td>
</tr>
<tr>
<td></td>
<td>57___ W1___ ___W</td>
</tr>
<tr>
<td></td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Corporation_________________________</td>
</tr>
<tr>
<td></td>
<td>_______________________________________</td>
</tr>
<tr>
<td>An example with " " symbol:</td>
<td></td>
</tr>
</tbody>
</table>
Use the **TS configuration** tab to control the Unitechnik export properties.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation</td>
<td>Select the scanning direction. Unitechnik export uses scanning layers to obtain the geometry of all parts in a cast unit.</td>
</tr>
<tr>
<td></td>
<td>The scanning direction depends on the plane of the cast unit main part. A floor panel is scanned from bottom to top side. A wall panel and a</td>
</tr>
<tr>
<td></td>
<td>column are scanned from one side to the other side. The position and direction of a basic shape of the exported cast unit depends on the rotation.</td>
</tr>
<tr>
<td>No</td>
<td>Floor: Bottom to top</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Front to rear side Wall</td>
<td>Wall: Front to rear side Column: Side to side</td>
</tr>
<tr>
<td>Rear to front side Wall</td>
<td>Wall: Rear to front side Column: From one side to the opposite side</td>
</tr>
<tr>
<td>Top to bottom Floor</td>
<td>Floor: Top to bottom</td>
</tr>
<tr>
<td>Top to bottom Wall</td>
<td>Wall: Top to bottom Column: Side to side</td>
</tr>
<tr>
<td>Left to right side Floor</td>
<td>Floor: Left to right side Wall: Top to bottom Column: Side to side</td>
</tr>
<tr>
<td>Right to left side Floor</td>
<td>Floor: Right to left side Wall: Bottom to top Column: From one side to the opposite side</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| -90 around Y | Floor: Rear to front side
Wall: Right to left side
Column: Top to bottom |

Diagram:

[Diagram showing a 3D model with annotations for -90 around Y option]
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examples of rotation:</td>
</tr>
<tr>
<td></td>
<td>• Wrong scanning plane (from the right side to the left side):</td>
</tr>
</tbody>
</table>

![Diagram showing an example of incorrect rotation]
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Correct scanning plane (from back to front side):** | Select the rotation around the z coordinate. The z coordinate has the same direction, but the x and y directions are changed.
To show the actual coordinate system, set **Draw pallet axis** to **Yes** on the **Pallet** tab. |
<p>| • No | No extra rotation. |
| • Swap X/Y | Swap x and y axis. |
| • X=max(X_dim,Y_dim) main part | X axis goes through the longer side of the main part. |
| • X=min(X_dim,Y_dim) main part | X axis goes through the shorter side of the main part. |</p>
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• $X=\max(X_{\text{dim}},Y_{\text{dim}})$ cast unit</td>
<td>X axis goes through the longer side of the cast unit.</td>
</tr>
<tr>
<td>• $X=\min(X_{\text{dim}},Y_{\text{dim}})$ cast unit</td>
<td>X axis goes through the shorter side of the cast unit.</td>
</tr>
<tr>
<td>• +90 around Z</td>
<td>Rotates x and y axis around the z axis by 90 degrees.</td>
</tr>
<tr>
<td>• - 90 around Z</td>
<td>Rotates x and y axis around the z axis by -90 degrees.</td>
</tr>
<tr>
<td>• 180 around Z</td>
<td>Rotates x and y axis around the z axis by 180 degrees.</td>
</tr>
</tbody>
</table>

The following example shows the coordinate system with no rotation and no extra rotation settings. Panel 1 has the z axis set parallel to the shorter side. It is incorrect in the Unitechnik format, so the coordinate system has to be rotated. Panel 2 shows a rotation by 90 degrees around the z axis.

Rotate 90° if pallet width exceeded

In double walls, select whether to rotate also the second shell when the pallet width is exceeded.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan position</td>
<td>The number of the scanning layers depends on the selected scan position. Each object of the cast unit is scanned in one direction.</td>
</tr>
<tr>
<td></td>
<td>Select the position in which all parts are scanned. Each part is scanned separately. Scanning plane is parallel to the basic shape plane.</td>
</tr>
<tr>
<td></td>
<td>• Bottom and top</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two scanning planes at the start and at the end of the bounding box of the scanning part.</td>
</tr>
<tr>
<td></td>
<td>• Bottom only</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>One scanning plane at the start of the bounding box of the scanning part.</td>
</tr>
<tr>
<td></td>
<td>• Top only</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>One scanning plane at the end of the bounding box of the scanning part.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Middle only</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>One scanning plane at the middle of bounding box of the scanning part.</td>
<td></td>
</tr>
<tr>
<td>To move the position of the exact scanning plane, use the Scan position offset boxes below to define start offset and end offset.</td>
<td></td>
</tr>
</tbody>
</table>

Merge CONTOUR layers

You can export one scanned layer only. With two scanned layers, they have to be merged into one layer.

- **Intersection**
 Creates polygon intersection of two contour geometries.

 - 1. First scanned layer
 - 2. Second scanned layer
 - 3. Layer

- **Union**
 Creates polygon union of two contour geometries.

 - 1 + 2 = 3

Merge CUTOUT layers

The same as **Contour export**, but for holes only.

Extend contour and add formwork

Select whether to extend the contour by embeds which are outside the element.

Name for additional formwork (embed)

Define a name for the embed.
Option
Geometry export

Description
Select whether the geometry of the exported part
is represented as polygons or lines.
Polygons exported:

Unitechnik

241

Unitechnik export: TS configuration tab


<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export rounded holes as circle (K)</td>
<td>Select whether you want to export rounded holes as circles (K) or polygons/lines.</td>
</tr>
<tr>
<td>Double wall turned</td>
<td>Select whether the first shell of a double wall on the pallet is turned. The options are:</td>
</tr>
<tr>
<td></td>
<td>No: Exported as in model, shell1 is in front, shell2 in background.</td>
</tr>
<tr>
<td></td>
<td>Yes, turn shell1: Exported according UT standard.</td>
</tr>
<tr>
<td></td>
<td>Yes, turn shell1 - fixed edge up: This is meant for special machines.</td>
</tr>
</tbody>
</table>

See also

- Unitechnik (page 226)
- Export to the Unitechnik format (page 228)
- Unitechnik export: Main tab (page 228)
- Unitechnik export: Embeds tab (page 243)
- Unitechnik export: Reinforcement tab (page 248)
25.4 Unitechnik export: Embeds tab

Use the **Embeds** tab to control the Unitechnik export properties.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal embeds</td>
<td>Select which parts are considered as embeds. Embedded parts are exported in the <code>MOUNPART</code> block. If the embed block consists of several parts, it is useful to weld all embeds into one block and then connect the created block with a concrete part to a cast unit. Subassemblies are also supported.</td>
</tr>
<tr>
<td></td>
<td>• Selected + steel</td>
</tr>
<tr>
<td></td>
<td>All classes listed in the Embeds classes box are considered as embeds. All steel parts are also considered as embeds.</td>
</tr>
<tr>
<td></td>
<td>• Selected</td>
</tr>
<tr>
<td></td>
<td>Classes listed in the Embeds classes box are only considered as embeds.</td>
</tr>
<tr>
<td></td>
<td>• No export</td>
</tr>
<tr>
<td></td>
<td>Ignores the Embeds classes box and exports all steel parts as standard parts.</td>
</tr>
<tr>
<td>Embeds classes</td>
<td>Enter the classes for embeds.</td>
</tr>
<tr>
<td>Export assemblies</td>
<td>Select how embeds and steel blocks are exported.</td>
</tr>
</tbody>
</table>

Embeds are exported as parts. All embedded welds and assembly relations are ignored.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welded embeds and the assembly block are exported as one part.</td>
<td></td>
</tr>
<tr>
<td>Only the main part of the embedded block or embedded assembly is exported.</td>
<td></td>
</tr>
<tr>
<td>The main part of the embedded block extended in the x direction to cover all the parts of the embedded block is exported.</td>
<td></td>
</tr>
<tr>
<td>Only the bounding box around the main part of the embedded block or embedded assembly is exported.</td>
<td></td>
</tr>
<tr>
<td>Def export code</td>
<td>Define how the insertion point and the direction for embeds is calculated. Possible values are 1, 2, 3, 11, 12, 21, 22, 23, 31 and 32.</td>
</tr>
<tr>
<td>Cut outer assemblies</td>
<td>Select how the embedded parts that are outside the concrete element are exported.</td>
</tr>
<tr>
<td>All parts in the embed are exported.</td>
<td></td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Only the embedded parts that are inside of the concrete element are exported. Embedded parts that are outside the concrete element are ignored. If an embedded part is partly inside a concrete element, the exported geometry of the embedded part is changed to cut.</td>
</tr>
<tr>
<td></td>
<td>Same as the previous option, but only embedded parts with class defined in Cut outer only classes are taken into account.</td>
</tr>
<tr>
<td>Cut outer only classes</td>
<td>Enter the classes of parts whose geometry is changed to cut when you have selected the last option in the Cut outer assemblies list.</td>
</tr>
</tbody>
</table>
| **Special assemblies export / Special export assembly file name** | The options affect the exported geometry of the embeds. The real geometry is replaced by the geometry defined in text files. The default name of the text file is `spec_assemblies_def.txt` and is searched for in the model folder. Use **Special export assembly file name** to define the name and the location of the text file. Required structure of the text file is:
- Name(text)
 Number_of_lines_defined(number)
- S(representing single line)
 Start_coors(number number)
 End_coors(number number)
- S(representing single line)
 Start_coors(number number)
 End_coors(number number)
 Example of the file: |
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| | **Quicky 4**
| | S -100 100 100 -100
| | S 100 100 -100 -100
| | S -100 -100 100 -100
| | S -100 100 100 100
| | **QuickyS 2**
| | S -50 0 50 0
| | S 0 -50 0 50
| | **E-Doze 2**
| | S -100 100 100 100
| | S 0 -100 0 0 |

The geometry of all embeds (from example with names Quicky, QuickyS, E-Doze) are replaced by geometry defined in the text file. In the following example, the part number 1 (the name is Beam) was not found in the text file so the geometry is exact. On the opposite side the part number 2 (the name is Quicky) was found, so the geometry is replaced.

Embed Z position
Select the embed z position. The options are **Minimum to pallet** or **Start point**.

Alternatively, you can use the `spec_assemblies_def.txt` file to set the position of the embeds.

For example:

```
Quicky 4 1 1 1 middle
S -100 100 100 -100
S 100 100 -100 -100
S -100 -100 100 -100
S -100 100 100 100
```
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation classes</td>
<td>Define the insulation classes. Parts with classes in this list will be exported as insulation parts. All parts considered insulation are exported in the MOUNPART block.</td>
</tr>
<tr>
<td>Electric tubes classes</td>
<td>Define the electric tubes classes. Parts with classes in this list will be exported as MOUNPART with lines geometry.</td>
</tr>
<tr>
<td>Opening embed classes</td>
<td>Define the opening embed classes. Parts with classes in this list will be exported as normal embeds in the MOUNPART block. The geometry will not be considered in the CONTOUR and CUTOUT blocks of the concrete part.</td>
</tr>
<tr>
<td>Opening cutout classes</td>
<td>Define the opening cutout classes. Parts with classes in this list will be exported only in regard to their geometry in the CUTOUT block of the concrete part. They will not be exported in the MOUNPART block.</td>
</tr>
<tr>
<td>Export insulation</td>
<td>Select whether insulation parts are exported in the MOUNPART block as embeds or in the SLABDATE block as concrete panels.</td>
</tr>
<tr>
<td>Export surface</td>
<td>Select whether surfaces are exported in the MOUNPART block as embeds or in the SLABDATE block as concrete panels.</td>
</tr>
<tr>
<td>Install identification</td>
<td>Select the installation identification for the MOUNPART block. The options are Installed (0), Only plotted (1), Only installed (2), Not installed, not plotted (3), Installed in reinforcement (4), Installed automatically (5)</td>
</tr>
</tbody>
</table>

See also

Unitechnik (page 226)
Export to the Unitechnik format (page 228)
Unitechnik export: Main tab (page 228)
Unitechnik export: TS configuration tab (page 233)
Unitechnik export: Reinforcement tab (page 248)
Unitechnik export: Validation tab (page 256)
Unitechnik export: Reinf. data specification tab (page 258)
Unitechnik export: Data specification tab (page 259)
25.5 Unitechnik export: Reinforcement tab

Use the Reinforcement tab to control the Unitechnik export properties.

You can export single reinforcing bars, groups of straight and bent reinforcing bars, and rectangular or polygonal or bent meshes. The reinforcing bar group, or rectangular or polygonal mesh is divided into several single reinforcing bars. All reinforcing bars are exported in the RODSTOCK block.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebars export</td>
<td>When set to Yes, straight reinforcing bars are exported. Hooks are supported. You can define the setting separately for straight or bent rebars.</td>
</tr>
<tr>
<td>Meshes export</td>
<td>When set to Yes, polygonal or rectangular meshes are exported. Hooks are supported. You can define the setting separately for straight or bent meshes. You can also select whether to unfold along longest line or parallely to pallet.</td>
</tr>
<tr>
<td>Bent reinf. as unfolded</td>
<td>When set to Yes, bent reinforcement is exported as unfolded. Hooks are also supported for unfolded reinforcement, and you can select Yes, with end hooks. Hooks form 0, 2 and 5 are detected. You can select between two reinforcement starting points: Origin in unfolded rebar or Origin in start rebar point. The option also affects the z level of the reinforcement in the resulting Unitechnik file.</td>
</tr>
<tr>
<td>Export meshes as embeds</td>
<td>When set to Yes, meshes are exported as embeds.</td>
</tr>
<tr>
<td>Braced girder classes</td>
<td>Enter the class of reinforcing bars, steel rods or profiles representing braced girders. For example, 15 17 5 means that parts with class 15, 17, or 5 are considered braced girders. If the Braced girder export and Braced girder classes boxes are not used, the braced girders will be exported incorrectly as reinforcement or embeds.</td>
</tr>
<tr>
<td>Reinforcement export type</td>
<td>Define the structure of the exported file for reinforcement.</td>
</tr>
</tbody>
</table>

Unitechnik export: Mounting part data specification tab (page 261)
Unitechnik export: Line attributes tab (page 261)
Unitechnik export: Pallet tab (page 265)
Unitechnik export: Log files tab (page 266)
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant with lying robot only</td>
<td>All embeds without modifications are exported.</td>
</tr>
<tr>
<td>Fabrication of welded rebars</td>
<td>If <code>Export type</code> is set to <code>Fabrication of welded rebars</code>, a single reinforcing bar is exported in one <code>STEELMAT</code> block, all reinforcing bars of one group are exported together in one <code>STEELMAT</code> block, and all reinforcing bars of one mesh are also exported together in one <code>STEELMAT</code> block.</td>
</tr>
<tr>
<td>Collect reinforcement</td>
<td>The structure of the output file is the same as for <code>Fabrication of welded rebars</code>. This option allows you to collect mesh, single reinforcing bars and reinforcing bar groups into groups exported in one <code>STEELMAT</code> block. The groups are collected based on the <code>Collect based on</code> field. You can also collect meshes which belong to different cast units.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>(orange color): The mesh belongs to the bottom panel of the cast unit, mesh name is MESH1.</td>
</tr>
<tr>
<td>2</td>
<td>(blue color): Two single bars, the name is MESH1.</td>
</tr>
<tr>
<td>3</td>
<td>(green color): One reinforcing bar group belongs to the top panel, the name is MESH1.</td>
</tr>
</tbody>
</table>

If **Reinforcement export type** is set to **Collect reinforcement** and **Collect based on** is set to **Name**, all three different reinforcement types are collected into one mesh, which is exported in one **STEELMAT** block.

Meshes as MOUNPART

Meshes are exported in the **MOUNPART** block.

Collect based on

Select how meshes are collected. Meshes with one bar are exported as a single reinforcing bar.

- **Name**

 Meshes, single reinforcing bars and reinforcing bar groups with the same name are collected into meshes. Meshes, single reinforcing bars and reinforcing bar groups with the same name equals one mesh in the exported file.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>Meshes, single reinforcing bars and reinforcing bar groups with the same class number are collected into meshes. Meshes, single reinforcing bars and reinforcing bar groups with one class number equal one mesh in the exported file.</td>
</tr>
<tr>
<td>Grade</td>
<td>Meshes, single reinforcing bars and reinforcing bar groups with the same grade are collected into meshes.</td>
</tr>
<tr>
<td>UDA</td>
<td>Meshes, single reinforcing bars and reinforcing bar groups with the same user-defined attribute are collected into meshes. The value you enter in the box next to this option is the UDA value.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Collect if distance is lower then</th>
<th>Define the maximum distance between the meshes to be collected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Reinforcing bars length</td>
<td>Select how the reinforcing bar length is calculated.</td>
</tr>
<tr>
<td></td>
<td>• Lines in the middle</td>
</tr>
</tbody>
</table>

- Reinforcing bars length: This option allows you to select how the reinforcing bar length is calculated. The diagram illustrates two options:
 - Lines in the middle: This option measures the reinforcing bar length by the distance between two lines drawn through the middle of the bars.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| • Lines at the edge | ![Diagram of lines at the edge](image)

Unitechnik export: Reinforcement tab
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforcing bars diameter</td>
<td>Select how the reinforcing bar diameter is exported. This selection affects the results of the Rebar length option.</td>
</tr>
<tr>
<td>Rebar direction angle limit</td>
<td>Select whether the reinforcing bars are sorted according to their angle direction.</td>
</tr>
<tr>
<td>• No</td>
<td>The reinforcing bars are not sorted.</td>
</tr>
<tr>
<td>• From 0 to 180</td>
<td>The reinforcing bars are exported as they are read from Tekla Structures and sorted according to their x and y position.</td>
</tr>
<tr>
<td>• From 0 to 180 ordered</td>
<td>The reinforcing bars are sorted according to the direction angle of the reinforcing bar: the reinforcing bars with lower angles are first.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>From 180 to 0 ordered</td>
<td>The reinforcing bars are sorted according to the direction angle of the reinforcing bar: the reinforcing bars with higher angles are first.</td>
</tr>
</tbody>
</table>
| **Reinforcement types** | Select the reinforcing bar type in a mesh to be exported.
1 and 2 are for the rods in the bottom layer.
5 and 6 are for the rods in the top layer.
4 is for other or inclined rods.
8 is for loose bars. |
| **Classes for loose rebars type 8** | Enter the classes of loose reinforcing bars to be collected. The bars are a part of a mesh and are exported as reinforcing bar type 8. |
| **Classes for non-automated rebars** | Enter the classes of non-automatic reinforcing bars to be collected. |
| **Add mesh stabilizing wires** | Select whether to add wires to the reinforcement mesh to stabilize the mesh. Use for meshes with large openings. |
| **Stabilization wire max spacing** | Enter a value to define the maximum spacing of the wires that stabilize the reinforcement mesh. |
| **Meshes sort** | Select whether meshes are sorted. |
| **Meshes offset** | Select whether the mesh has an offset defined in the STEELMAT block. If the option is set to Yes, the value for X and Y direction is set to zero. If the option is set to No, the X and Y values are exported according to modeled situation. |

See also
- Unitechnik (page 226)
- Export to the Unitechnik format (page 228)
- Unitechnik export: Main tab (page 228)
- Unitechnik export: TS configuration tab (page 233)
- Unitechnik export: Embeds tab (page 243)
- Unitechnik export: Validation tab (page 256)
- Unitechnik export: Reinf. data specification tab (page 258)
- Unitechnik export: Data specification tab (page 259)
- Unitechnik export: Mounting part data specification tab (page 261)
- Unitechnik export: Line attributes tab (page 261)
25.6 Unitechnik export: Validation tab

Use the Validation tab to control the Unitechnik export properties.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw scanned geometry</td>
<td>The exported geometry can be shown with Draw scanned geometry. This property shows the inside lines of the exported reinforcing bars. Select whether you want to check if the geometry of the exported parts is correct. It shows the lines representing the exported rectangle of the basic shape, the exported geometry of parts, cuts, embeds, and reinforcement. Embeds are projected to the plane of the basic shape. The reinforcement lines are positioned inside each reinforcing bar.</td>
</tr>
<tr>
<td>Draw pallet axis</td>
<td>Select whether to show the coordinate system. The axes are displayed with dotted lines.</td>
</tr>
<tr>
<td>Wall to pallet checking</td>
<td>Select whether the export checks the wall size against the pallet size. If you select the Yes, if...</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>exceeded, do not export option, the Pallet width and Max. cast unit thickness options cannot be empty.</td>
</tr>
<tr>
<td>Pallet width</td>
<td>Define the pallet width. With the help of pallet width and length the Wall to pallet checking option can check if a wall element is too big and does not fit to a pallet. If the wall element does not fit to a pallet, the wall element is turned.</td>
</tr>
<tr>
<td>Pallet length</td>
<td>Define the pallet length.</td>
</tr>
<tr>
<td>Max cast unit thickness</td>
<td>Define the maximum cast unit thickness. To avoid collision with the drying chamber, the maximum thickness of a cast unit should be smaller than the maximum opening of the drying chamber.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebar diameter limitation</td>
<td>Minimum and maximum diameter for the reinforcing bars to be exported.</td>
</tr>
<tr>
<td>Rebar length limitation</td>
<td>Minimum and maximum length for the reinforcing bars to be exported.</td>
</tr>
<tr>
<td>Rebar length limitation (Longitudinal)</td>
<td>Minimum and maximum diameter for longitudinal reinforcing bars to be exported.</td>
</tr>
<tr>
<td>Rebar length limitation (Cross)</td>
<td>Minimum and maximum length for cross reinforcing bars to be exported.</td>
</tr>
<tr>
<td>Export others</td>
<td>Select whether the reinforcing bars that do not meet the above limitations are exported at all (No), as loose reinforcing bars of type 4 or 8, or whether the diameter and length limitations are ignored.</td>
</tr>
</tbody>
</table>

See also

- Unitechnik (page 226)
- Export to the Unitechnik format (page 228)
- Unitechnik export: Main tab (page 228)
- Unitechnik export: TS configuration tab (page 233)
- Unitechnik export: Embeds tab (page 243)
- Unitechnik export: Reinforcement tab (page 248)
- Unitechnik export: Reinf. data specification tab (page 258)
- Unitechnik export: Data specification tab (page 259)
- Unitechnik export: Mounting part data specification tab (page 261)
- Unitechnik export: Line attributes tab (page 261)
25.7 Unitechnik export: Reinf. data specification tab

Use the **Reinf. data specification** tab to control the Unitechnik export properties.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebars: Article number rebar</td>
<td>Select which property you want to export as a reinforcing bar article number for rebars.</td>
</tr>
<tr>
<td>Rebars: Article number mesh</td>
<td>Select which property you want to export as a mesh article number for rebars.</td>
</tr>
<tr>
<td>Meashes: Article number rebar</td>
<td>Select which property you want to export as a reinforcing bar article number for meshes.</td>
</tr>
<tr>
<td>Meashes: Article number mesh</td>
<td>Select which property you want to export as a mesh article number for meshes.</td>
</tr>
<tr>
<td>Meshes designation</td>
<td>Select what information you want to export about the meshes.</td>
</tr>
<tr>
<td>Info 1 text (UT 6.0)</td>
<td>Information field is filled with the selected data.</td>
</tr>
<tr>
<td>Info 2 text (UT 6.0)</td>
<td>Information field is filled with the selected data.</td>
</tr>
<tr>
<td>Braced girder type</td>
<td>Select the string value of girder type field in the BRGIRDER block in the exported file.</td>
</tr>
<tr>
<td></td>
<td>Empty</td>
</tr>
<tr>
<td></td>
<td>Name</td>
</tr>
<tr>
<td></td>
<td>UDA</td>
</tr>
</tbody>
</table>
Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User defined text</td>
<td>The value you enter in the box next to this option is exported.</td>
</tr>
<tr>
<td>Cage designation</td>
<td>Select what information you want to export about the the cage in the CAGE block (UT 6.1).</td>
</tr>
<tr>
<td>Info 1 text</td>
<td>Information field is filled with the selected data.</td>
</tr>
<tr>
<td>Info 2 text</td>
<td>Information field is filled with the selected data.</td>
</tr>
</tbody>
</table>

See also
- Unitechnik (page 226)
- Export to the Unitechnik format (page 228)
- Unitechnik export: Main tab (page 228)
- Unitechnik export: TS configuration tab (page 233)
- Unitechnik export: Embeds tab (page 243)
- Unitechnik export: Reinforcement tab (page 248)
- Unitechnik export: Validation tab (page 256)
- Unitechnik export: Data specification tab (page 259)
- Unitechnik export: Mounting part data specification tab (page 261)
- Unitechnik export: Line attributes tab (page 261)
- Unitechnik export: Pallet tab (page 265)
- Unitechnik export: Log files tab (page 266)

25.8 Unitechnik export: Data specification tab

Use the **Data specification** tab to control the Unitechnik export properties.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of order</td>
<td>Order fields in the HEADER block are filled with the selected data.</td>
</tr>
<tr>
<td>Name of component</td>
<td>Component fields in the HEADER block are filled with the selected data.</td>
</tr>
<tr>
<td>Drawing number</td>
<td>Drawing number fields in the HEADER block are filled with the selected data.</td>
</tr>
<tr>
<td>Drawing revision</td>
<td>Drawing revision fields in the HEADER block are filled with the selected data and drawing revision mark is exported.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Product code</td>
<td>Product code fields in the HEADER block are filled with the selected data.</td>
</tr>
<tr>
<td>Project line3 text</td>
<td>Project information fields (3rd line) in the HEADER block are filled with the selected data.</td>
</tr>
<tr>
<td>Project line4 text</td>
<td>Project information fields (4rd line) in the HEADER block are filled with the selected data.</td>
</tr>
<tr>
<td>File creator (UT 6.0)</td>
<td>You can select to export the Tekla Structures version information, use name or user-defined text in the HEADER block.</td>
</tr>
<tr>
<td>Free field (UT 5.2)</td>
<td>Only for Unitechnik 5.2. You can select to export the following information to the HEADER block: user name, user-defined text, file name with extension, file name without extension, or model name.</td>
</tr>
<tr>
<td>Slab number</td>
<td>Slab number field in the SLABDATE blocks is filled with the selected data.</td>
</tr>
<tr>
<td>Transport unit number, Transport sequence number</td>
<td>Define a value for the transport unit and sequence numbers in the SLABDATE blocks.</td>
</tr>
<tr>
<td>Production thickness</td>
<td>Calculates the production thickness in SLABDATE block based on cast unit width or concrete part width.</td>
</tr>
<tr>
<td>Info 1 text (60) - Info 4 text (60)</td>
<td>Information fields (1-4) in the SLABDATE and MOUNPART blocks are filled with the selected data.</td>
</tr>
<tr>
<td>Export project coordinates</td>
<td>Select whether you want to swap X and Y axis of the exported project coordinates.</td>
</tr>
</tbody>
</table>

See also

- Unitechnik (page 226)
- Export to the Unitechnik format (page 228)
- Unitechnik export: Main tab (page 228)
- Unitechnik export: TS configuration tab (page 233)
- Unitechnik export: Embeds tab (page 243)
- Unitechnik export: Reinforcement tab (page 248)
- Unitechnik export: Validation tab (page 256)
- Unitechnik export: Reinf. data specification tab (page 258)
- Unitechnik export: Mounting part data specification tab (page 261)
- Unitechnik export: Line attributes tab (page 261)
- Unitechnik export: Pallet tab (page 265)
25.9 **Unitechnik export: Mounting part data specification tab**

Use the **Mounting part data specification** tab to control the Unitechnik export properties.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of mounting part</td>
<td>You can define the type of mounting part in the <code>MOUNTPART</code> block using a user-defined attribute.</td>
</tr>
<tr>
<td>Reference number</td>
<td>You can define the reference number of a mounting part in the <code>MOUNTPART</code> block using a user-defined attribute.</td>
</tr>
<tr>
<td>Mountpart name</td>
<td>Enter the <code>MOUNTPART</code> name.</td>
</tr>
<tr>
<td>Info 1 text (UT 6.0)</td>
<td>Information field is filled with the selected data.</td>
</tr>
<tr>
<td>Info 2 text (UT 6.0)</td>
<td>Information field is filled with the selected data.</td>
</tr>
</tbody>
</table>

See also

- Unitechnik (page 226)
- Export to the Unitechnik format (page 228)
- Unitechnik export: Main tab (page 228)
- Unitechnik export: TS configuration tab (page 233)
- Unitechnik export: Embeds tab (page 243)
- Unitechnik export: Reinforcement tab (page 248)
- Unitechnik export: Validation tab (page 256)
- Unitechnik export: Reinf. data specification tab (page 258)
- Unitechnik export: Data specification tab (page 259)
- Unitechnik export: Line attributes tab (page 261)
- Unitechnik export: Pallet tab (page 265)
- Unitechnik export: Log files tab (page 266)
25.10 Unitechnik export: Line attributes tab

Use the **Line attributes** tab to control the Unitechnik export properties. Sometimes line attribute values that are exported in the Unitechnik files are not suitable for the particular situation. For example, to preserve lightness in the model, you might have fewer chamfers in the model than there will be in the actual structure. For this reason, you might want to override some line attributes in the export so that the model remains light, but the exported Unitechnik files are correct. You can do this by using the options on the **Line attributes** tab.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export line attributes for contour</td>
<td>Select whether the line attribute values are used for contours (Export line attributes for contour) or for holes (Export line attributes for cutouts) in the export.</td>
</tr>
<tr>
<td>• None</td>
<td>Line attribute values are not used.</td>
</tr>
<tr>
<td>• All lines</td>
<td>Line attribute values are used for all lines.</td>
</tr>
<tr>
<td>• Outmost lines only</td>
<td>Line attribute values are used only for the outermost lines in the part:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This option is available only for contours.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Border line overriding</th>
<th>You can enter up to six border line modifications in the line attribute export.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No border lines are overridden.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertical outermost border lines at the start are overridden.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Horizontal outermost border lines at the bottom are overridden.</td>
</tr>
<tr>
<td></td>
<td>Vertical outermost border lines at the end are overridden.</td>
</tr>
<tr>
<td></td>
<td>Horizontal outermost border lines at the top are overridden.</td>
</tr>
<tr>
<td></td>
<td>Vertical outermost border lines are overridden.</td>
</tr>
<tr>
<td></td>
<td>Horizontal outermost border lines are overridden.</td>
</tr>
<tr>
<td></td>
<td>Horizontal and vertical outermost border lines are overridden.</td>
</tr>
<tr>
<td></td>
<td>All inclined outermost border lines are overridden.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>All outermost border lines are overridden.</td>
</tr>
<tr>
<td></td>
<td>All vertical border lines, except the outermost border lines are overridden.</td>
</tr>
<tr>
<td></td>
<td>All horizontal border lines, except the outermost border lines are overridden.</td>
</tr>
<tr>
<td></td>
<td>All vertical and horizontal border lines except the outermost border lines are overridden.</td>
</tr>
<tr>
<td></td>
<td>All border lines except outermost border lines are overridden.</td>
</tr>
<tr>
<td></td>
<td>All border lines except the horizontal and vertical outermost border lines are overridden.</td>
</tr>
<tr>
<td></td>
<td>All border lines are overridden.</td>
</tr>
</tbody>
</table>
Option

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orig. attr, New attr.</td>
<td>Define the original attribute (Orig. attr) and the attribute that will be used in the export (New attr.). In the example below the horizontal outermost border line at the top would get a line attribute value 0033 originally, but the value will be overridden, and the line attribute value in the Unitechnik file will be 0040.</td>
</tr>
</tbody>
</table>

![Diagram showing line attributes](image)

| **Export line attributes for cutouts** | Select whether all line attributes are exported for holes. |
| **Export angle of 1st and last vertical border** | Select whether you want to export the angle of cut at the first and last vertical border. |

See also

- Unitechnik (page 226)
- Export to the Unitechnik format (page 228)
- Unitechnik export: Main tab (page 228)
- Unitechnik export: TS configuration tab (page 233)
- Unitechnik export: Embeds tab (page 243)
- Unitechnik export: Reinforcement tab (page 248)
- Unitechnik export: Validation tab (page 256)
- Unitechnik export: Reinf. data specification tab (page 258)
- Unitechnik export: Data specification tab (page 259)
- Unitechnik export: Mounting part data specification tab (page 261)
- Unitechnik export: Pallet tab (page 265)
- Unitechnik export: Log files tab (page 266)

25.11 Unitechnik export: Pallet tab

Use the **Pallet** tab to control the Unitechnik export properties.
Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placing on pallet</td>
<td>Select if the placing is checked from the start or end of the pallet.</td>
</tr>
<tr>
<td>Offset at start or end</td>
<td>Define the offset at start or end of the pallet used in checking.</td>
</tr>
<tr>
<td>Clearance between cast units</td>
<td>Define the clearance between the cast units used in checking.</td>
</tr>
<tr>
<td>Same cast unit thickness needed</td>
<td>Select if the cast unit thickness is checked.</td>
</tr>
</tbody>
</table>

See also

- [Unitechnik (page 226)](#)
- [Export to the Unitechnik format (page 228)](#)
- [Unitechnik export: Main tab (page 228)](#)
- [Unitechnik export: TS configuration tab (page 233)](#)
- [Unitechnik export: Embeds tab (page 243)](#)
- [Unitechnik export: Reinforcement tab (page 248)](#)
- [Unitechnik export: Validation tab (page 256)](#)
- [Unitechnik export: Reinf. data specification tab (page 258)](#)
- [Unitechnik export: Data specification tab (page 259)](#)
- [Unitechnik export: Mounting part data specification tab (page 261)](#)
- [Unitechnik export: Line attributes tab (page 261)](#)
- [Unitechnik export: Log files tab (page 266)](#)

25.12 Unitechnik export: Log files tab

Use the **Log files** tab to control the Unitechnik export properties.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log file directory path</td>
<td>Define the path for a log file. If the path is empty, then the log file is saved in the same location as the export files.</td>
</tr>
<tr>
<td>Create main Log file</td>
<td>Select whether to create a one main log file.</td>
</tr>
<tr>
<td>Create Log file for each file</td>
<td>Select whether a log file is created separately for each export file.</td>
</tr>
<tr>
<td>Write history to log file and UDA</td>
<td>Create a log file containing the history of the exported parts. The information is also written to the UDA <code>UT_export_history</code> of the main part.</td>
</tr>
</tbody>
</table>

Unitechnik 266 Unitechnik export: Log files tab
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The following data is gathered: export time, part information, export path and file, and who has performed the export.</td>
</tr>
<tr>
<td>Show error dialog boxes</td>
<td>Select whether an error message is shown when exported parts are not numbered correctly or when the embedded parts have no parent part.</td>
</tr>
</tbody>
</table>

See also

Unitechnik (page 226)
Export to the Unitechnik format (page 228)
Unitechnik export: Main tab (page 228)
Unitechnik export: TS configuration tab (page 233)
Unitechnik export: Embeds tab (page 243)
Unitechnik export: Reinforcement tab (page 248)
Unitechnik export: Validation tab (page 256)
Unitechnik export: Reinf. data specification tab (page 258)
Unitechnik export: Data specification tab (page 259)
Unitechnik export: Mounting part data specification tab (page 261)
Unitechnik export: Line attributes tab (page 261)
Unitechnik export: Pallet tab (page 265)
Use **Layout Manager** to import and export layout data between Tekla Structures and a field layout device. **Layout Manager** enables you to use accurate model data on the construction site.

The image below illustrates the phases in the field layout workflow.

1. First define layout points and layout lines in your model, and organize them in suitable groups in **Layout Manager**. We recommend that you first set up the groups in **Layout Manager**, then model the points and lines and organize them in the groups. The points and lines are used in a layout device on the construction site to position parts correctly.

2. Once you have defined the layout data, you can export the data from **Layout Manager** to a field layout device in three different export formats: point file (.txt), job file (.cnx), and field link file (.tfl).

3. You can check and measure the positions of the exported layout points (design points) on the site using a field layout device. The layout device helps
you to position the parts correctly on the site, as the points along the part boundaries can be placed to the correct locations.

4. To place the part boundaries correctly, measure the as-built positions of the parts on the site and create measured points along the part boundaries.

5. When you have measured the as-built positions and created measured points, you can import the points to Tekla Structures. You can first preview the points in Layout Manager.

6. Finally, you can view the measured points in the model.

To import and export directly with a handheld mobile device such as Trimble® LM80, you need to connect your computer to the device. Your computer needs to have software that enables it to communicate with a mobile device. For information on how to connect your computer to Trimble layout devices, see the Trimble website.

See also

Create a group in Layout Manager (page 269)
Create a layout point (page 271)
Create a layout line (page 272)
View groups, layout points and layout lines in Layout Manager (page 273)
Export layout data from Layout Manager (page 274)
Import layout data to Layout Manager (page 277)

26.1 Create a group in Layout Manager

You can create groups in Layout Manager to organize layout points and layout lines suitably.

1. On the Manage tab, click Layout manager.
2. Right-click Layout Manager Object Group and select Add Group.
 You may want to set up several groups so that you can organize the points and lines into groups as they are modeled.
3. If needed, click the group to rename it.
 A group name can have 18 characters.

NOTE Layout Manager may show an Unassigned group in the tree structure. The Unassigned group shows layout points and layout lines that have inadequate
group information. Such points and lines have usually been created in an earlier Layout Manager version.

See also
Define numbering settings for groups in Layout Manager (page 270)
Define a local coordinate system for a group in Layout Manager (page 270)

Define numbering settings for groups in Layout Manager
You can define that all groups in Layout Manager have the same numbering settings. When you change the settings, the changed settings are used in all the groups you create after the change. The settings in the existing groups are not changed.

1. On the Manage tab, click Layout manager.
2. Click Settings ➤ Group.
3. Define the numbering settings.
 a. Enter the prefix in the Prefix box.
 b. Enter the starting number in the Starting number box.
 c. Enter the maximum length of the number in the Number max length box.
 d. Enter a delimiter to separate the prefix and the number in the Delimiter box: a hyphen or an empty space.
 e. Select from the Fill leading space list whether the leading space in front of the number is filled with zeroes or not, for example, PFX 00001 or PFX 1.
4. Click OK.
5. To apply the numbering settings to the points and lines in a group, right-click the group and select Auto Naming.

NOTE You can modify the numbering settings of an individual group if you do not want to use the default settings. Select the group and change the settings. To restore the default settings, click Reset.

See also
Create a group in Layout Manager (page 269)
Define a local coordinate system for a group in Layout Manager
You can define a local coordinate system for each group in Layout Manager. Local coordinate systems may be relative to a municipal monument or to the local project site datum. In many cases, models may already be properly placed so that no local coordinate system needs to be defined.

1. On the Manage tab, click Layout manager.
2. Select a group.
3. Define the coordinates using the Group local coordinate system options:
 a. Click the Pick button next to the Location box and pick the origin in the model.
 b. Click the Pick button next to the Axis X box and set the x direction in the model.
 c. Click the Pick button next to the Axis Y box and set the y direction in the model.
4. Click Set.

NOTE You can set the work plane using a suitable Workplane command on the View tab. When you have set the work plane, select a group in Layout Manager. Click the Pick button next to the Use current work plane option under Group local coordinate system and click Set.

See also
Create a group in Layout Manager (page 269)

26.2 Create a layout point
Use the Layout Point tool in the Applications & components catalog to create layout points. The layout points that you create in the model are design points that you can export to a layout device.

Before you start, ensure that the Select components selection switch is activated.

1. Double-click the Layout Point tool in the list of components in the Applications & components catalog.
2. Define the layout point properties on the Parameters tab:
 a. Enter a name and a description for the layout point.
You can use the following special characters in layout point names: _ ~ % ! @ # & . = + - and space.

Note that the maximum length of the name is 16 characters if you export layout data to .cnx and .tfl formats. When exporting to a text file, there is no limitation to the number of characters in the name. The maximum length of the description is 24 characters.

b. Enter the diameter of the layout point in the **Size** box.

Layout Manager uses the XS_IMP_EERIAL advanced option to determine the units. Set XS_IMP_EERIAL to TRUE to show imperial units.

c. Select whether the layout point is a reference point or not.

A reference point is a mapping point to another coordinate system such as a geo-spatial coordinate system or a municipal monument.

d. Select a color for the layout point.

e. Select a shape for the layout point.

f. Select a group from the list or create a new group by entering a name.

3. Select a location for the layout point in the model.

The layout point is created when you select the location.

4. On the **Manage** tab, click **Layout manager**.

5. Click **Refresh** to show the added point.

NOTE You can also add a layout point to a group in **Layout Manager**. First select a group, then select the point in the model. Right-click the group and select **Add Selected** from the pop-up menu. Click **Refresh** to show the point.

See also

Create a group in Layout Manager (page 269)

Measured points in Layout Manager (page 280)

26.3 Create a layout line

Use the **Layout Line** tool in the **Applications & components** catalog to create layout lines. Layout lines are created between layout points.

Before you start, ensure that the **Select components** selection switch is activated. Create layout points in your model.
1. Double-click the **Layout Line** tool in the list of components in the **Applications & components** catalog.

2. Define the properties of the layout line:
 a. Enter a name and a description for the layout line.
 b. Enter the diameter of the layout line in the **Size** box. **Layout Manager** uses the **XS_IMPERIAL** advanced option to determine the units. Set **XS_IMPERIAL** **TRUE** to show imperial units.
 c. Select a color for the layout line.
 d. Select a group from the list or create a new group by entering a name.

3. Pick the first layout point.

4. Pick the second layout point.
 The start point and the end point cannot be in the same location.
 The layout line is created.

5. On the **Manage** tab, click **Layout manager**.

6. Click **Refresh** to show the added line.

NOTE You can also add a layout line to a group in **Layout Manager**. First select a group, then select the line in the model. Right-click the group and select **Add Selected** from the pop-up menu. Click **Refresh** to show the line.

See also

Create a group in **Layout Manager** (page 269)
Create a layout point (page 271)

26.4 View groups, layout points and layout lines in **Layout Manager**

You can view the properties of groups, layout points and layout lines in **Layout Manager**. You can zoom to and highlight selected layout points and layout lines in the model and in **Layout Manager**.

On the **Manage** tab, click **Layout manager** and do any of the following:

<table>
<thead>
<tr>
<th>To</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show or hide the properties of groups,</td>
<td>Click Show property pane in Layout Manager. The property pane is visible by default.</td>
</tr>
</tbody>
</table>
To | Do this
--- | ---
layout points and layout lines in Layout Manager | |

Zoom in to a point or a line in the model
1. Right-click a point or a line in Layout Manager.
2. Select **Zoom Selected** from the pop-up menu.

Highlight a point or a line in Layout Manager
1. Select a point or a line in the model.
2. Click in Layout Manager.
3. Select **Highlight selected model point**.
 To remove the highlighting, select **Redraw**.

See also
Layout Manager (page 268)

26.5 **Export layout data from Layout Manager**
You can use **Layout Manager** to export layout data from your model to a layout device.

You have two options when exporting:
- Export the layout data from **Layout Manager** to a file and move the file later to a layout device.
- Export a file directly to a layout device. You can do this if you connect the layout device to your computer using a USB or a Bluetooth connection.

Before you export, you can define the default export settings in **Layout Manager Settings** ☀️, see Define default export settings in Layout Manager (page 276).

1. On the **Manage** tab, click **Layout manager**.
2. Click **Settings** ☀️ to check that you have defined the needed export settings.
3. Close the **Settings**.
4. Select the group that you want to export.

 If you have defined a local coordinate system for a group, the points in such a group are exported according to the local coordinate system. The local coordinates of the points are shown in the export dialog box. The
temporary work plane location will not affect the coordinates of the exported points.

If you select more than one group, ensure that the groups have the same local coordinate system. If the groups have different local coordinate systems, a warning message is displayed and you cannot proceed to export.

5. Click **Export**.

6. Select an export option:
 - **Export point file (.txt)** to export layout points.
 - **Export job file (.cnx)** to export all layout data in the model to Trimble® LM80.
 - **Export Field Link File (.tlf)** to export all layout data in the model to a field link device.
 - **Export job file (x86)** to export all layout data in the model to Trimble® LM80. This option can be used in 32-bit computers only.

Note that in addition to Trimble devices, other layout devices can also read in the .txt and .cnx file types.

NOTE The layout points that you create in the model are design points that you can export to a layout device.

The maximum length of the layout point name is 16 characters if you export layout data to .cnx and .tfl formats. When exporting to a text file, there is no limitation to the number of characters in the name. The maximum length of the description is 24 characters.

7. Click **Select** to enter a name for the export file.

8. Select the destination folder.

9. Click **Save**.

10. If needed, select a drawing in **Map file**.

 You can attach a layout drawing when exporting a job file (.cnx) and a field link file (.tfl). You can use the layout drawing with the layout point data in the layout device.

11. Click **OK**.

See also

- [Layout Manager (page 268)]
- [Define the drawing scale in Layout Manager (page 276)]
Define default export settings in Layout Manager
You can define the default export settings for each export file type: point file (.txt), Trimble LM80 job file (.cnx), and Trimble Field Link (.tfl). The units depend on the settings in File menu --> Settings --> Options --> Units and decimals.

1. On the Manage tab, click Layout manager.
2. Click Settings.
3. Click Point File to define the export settings for point files (.txt):
 a. Select the unit.
 b. Select the delimiter.
 c. Define the order of column headers in point files. Right-click a header in the list and select Move Up or Move Down.
4. Click Trimble LM80 to define the export settings for Trimble® LM80 job files (.cnx):
 a. Select the Default directory.
 b. Select the default Length unit.
 You can select to export as meters, feet-inches, or survey feet.
 c. Select the plane Angle unit.
 The default angle unit is Degree.
 d. Select the Version of the Trimble® LM80 device.
 The default version is V4. Ensure that the setting matches the version of your layout device.
5. Click Trimble Field Link to define the Trimble Field Link file default directory for field link files (.tfl).
6. Click OK.

See also
Export layout data from Layout Manager (page 274)

Define the drawing scale in Layout Manager
You can include a drawing when exporting all layout data in a job file or a field link file from Layout Manager. The drawing is exported in the .dxf or .dwg format. To ensure that the drawing is exported correctly, you need to define the drawing scale.
1. Create a general arrangement (GA) drawing of your model.
 We recommend that you make the drawing as simple as possible, include
 only parts and grids, to show the drawing correctly in a layout device. You
 can, for example, create a drawing template to be used in **Layout Manager** export.

2. Open the drawing.
3. Double-click the drawing view frame to open **View Properties**.
4. Copy the drawing scale.
5. On the **Manage** tab, click **Layout manager**.
6. Click **Drawing Scale Calculator**.
7. Paste the drawing scale in the **Scale Denominator** box.
8. Click **Calculate**.
 The drawing scale is shown in the **Scale** box.
9. Copy the drawing scale from the **Scale** box and close the **Drawing Scale Calculator** dialog box.
10. On the **File** menu, click **Export drawings**.
11. Define the export file name on the **Export file** tab.
12. Go to the **Options** tab.
13. Paste the copied drawing scale in the **Drawing scale** box.
14. Click **Export**.

You can now export the job file or the field link file and the drawing from **Layout Manager**.

See also

Export layout data from Layout Manager (page 274)

26.6 Import layout data to Layout Manager

You can use **Layout Manager** to import layout data to your model from a layout device to verify the as-built conditions.

You have two options when importing:

- Copy the file that contains the layout data from the layout device to your computer and import the file later to **Layout Manager**.
- Import the file directly to **Layout Manager**. You can do this if you connect the layout device to your computer using a USB or a Bluetooth connection.

1. On the **Manage** tab, click **Layout manager**.
2. On the **View** tab, click **Workplane** to set the work plane to the model origin or to the location you want to use as the origin when importing points and lines.

3. In **Layout Manager**, click **Import**.

4. Select an import option:
 - **Import point file (.txt)** to import layout points.
 Point files (.txt) are always imported to the **Design Points** tab, regardless of whether they have been measured on the site or not.
 - **Import job file (.cnx)** to import all layout data in a Trimble® LM80 job file.
 Job files (.cnx) are imported to the **Measured Points** tab.
 - **Import Field Link file (.tfl)** to import all layout data in a field link file.
 Field link files (.tfl) import both design points that have been exported from Tekla Structures originally and measured points that have been measured on the site. In the import dialog box, a design point is flagged if the point name and, therefore, the point already exists. We recommend that you do not import an existing design point. Clear the check box next to the flag to exclude an existing point from the import.
 - **Import job file (.cnx 32 bit only)** to import all layout data in a Trimble® LM80 job file to a 32-bit computer. You need to connect your computer directly to the Trimble® LM80 device to use this option.

5. Click **Select** to select the file to import.

6. Click **Load** to show the file contents.

7. If needed, define the point file columns in the **Text File Import - Column Headers Mapping** dialog box.

8. Define the import location in your model using the **Insert coordinate system** options.
 You can either select the **Insert to default coordinate system** option or define the location. To define the location:
 - Click the **Pick** button next to the **Location** box and pick the origin in the model.
 - Click the **Pick** button next to the **Axis X** box and set the x direction in the model.
 - Click the **Pick** button next to the **Axis Y** box and set the y direction in the model.
 - Click **Set**.
9. Select the group to which the layout data is imported.

If you do not select any existing group or create a new group, the layout points are imported using their existing Trimble layer categories.

10. Click OK.

NOTE Design points are layout points that have been created in the Tekla Structures model. Measured points are layout points that have been measured on the construction site.

See also

Define point file columns in Layout Manager (page 279)

Measured points in Layout Manager (page 280)

Define point file columns in Layout Manager

You can import layout points to your model in a point file that lists the layout point names and the point coordinates. If the point file does not have a header or if **Layout Manager** does not recognize the header, the Text File Import - Column Headers Mapping dialog box is displayed when you click **Load** to show the file contents in the import dialog box.

Example of a point file without a header:

```
Layout point 6, 0, 13.12336, , 0
Layout point 5, 0, 6.56168, , 0
Layout point 4, 4.92126, 0, , 0
Layout point 3, 9.84252, 6.56168, , 0
Layout point 2, 4.92126, 13.12336, , 0
Layout point 1, 9.84252, 13.12336, , 0
Layout point, 9.84252, 0, , 0
```

In the **Text File Import - Column Headers Mapping** dialog box, the content of the point file is shown at the bottom and the column headings are shown at the top.

1. Check that the point file content is shown under the correct column headings:
 - **Name Column** shows the layout point name.
 - **X Column** shows the x coordinates.
 - **Y Column** shows the y coordinates.
 - **Z Column** shows the z coordinates.
2. If needed, change the columns at the top of the dialog box by selecting the correct column from the list.

3. Select a measuring unit.

4. Select in the **Process first line** option whether the first line in the point file is a header row or not.
 - **Yes** means that the first line has layout point data and that it is not a header line.
 - **No** means that the first line is a header line.

5. Click **OK**.

See also

Import layout data to Layout Manager (page 277)

Measured points in Layout Manager

Measured points are points that are measured on the construction site using a layout device and imported to Tekla Structures. You can view the properties of measured points in Layout Manager or in the Layout Point tool dialog box. In addition to the general point properties, such as name, diameter, and shape, measured points have measured point properties that cannot be modified in Tekla Structures.
To view the properties, select the point in **Layout Manager** or double-click the point in the model.

The measured point properties are as follows:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is Stakeout Point</td>
<td>You can label a measured point as staked in the Trimble® LM80 device if it deviates from the corresponding layout point created in the model.</td>
</tr>
<tr>
<td></td>
<td>The property is shown in the Layout Point tool dialog box.</td>
</tr>
<tr>
<td>Is Field Point</td>
<td>A field point has been measured on the construction site and imported to Tekla Structures.</td>
</tr>
<tr>
<td></td>
<td>Is Field Line is the corresponding property for layout lines.</td>
</tr>
<tr>
<td></td>
<td>The property is shown in the Layout Point tool dialog box.</td>
</tr>
<tr>
<td>HR</td>
<td>Height of rod is the height of the prism on the pole. It is used to determine instrument height, and therefore the actual elevation of the measured point.</td>
</tr>
<tr>
<td>HA</td>
<td>Horizontal angle is the angle that was measured from the back sight or 0 angle.</td>
</tr>
<tr>
<td>VA</td>
<td>Vertical angle is the difference in angle measurement from the horizontal position of the instrument scope.</td>
</tr>
<tr>
<td>SD</td>
<td>Slope distance is the actual distance regardless of elevation change. Horizontal angle is the distance along a horizontal plane.</td>
</tr>
<tr>
<td>PPM</td>
<td>Parts per million is a factor used to determine measurements that take into account the air conditions and how they affect the ability of light to travel through the air. This property is important in the measurement calculation and accuracy.</td>
</tr>
<tr>
<td>Benchmark offset</td>
<td>Benchmark offset is a measurement that is taken to</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>define a benchmark that elevation measurements are calculated from.</td>
</tr>
</tbody>
</table>

See also

Import layout data to Layout Manager (page 277)
Create a layout point (page 271)
You can publish your Tekla Structures models as web pages that can be viewed via the Internet using Internet Explorer.

See also
- Publish a model as a web page (page 283)
- Customize Web Viewer tooltips (page 284)
- Web templates in Web Viewer (page 285)
- Send Web Viewer models (page 285)
- Create a named view in Web Viewer (page 286)
- View a model in Web Viewer (page 287)

27.1 Publish a model as a web page

You can publish a model as a web page with Tekla Web Viewer and include tooltips in the model.

1. On the **File** menu, click **Export** --> **Publish as web page**.
2. Select **Publish as Web Page**.
3. Select whether to publish the entire model or selected objects.
 - If you are publishing selected objects, use the appropriate selection switch to control whether parts, or parts in assemblies or cast units are published.
4. Select the file type.
5. Define a title for the published web page.
6. Select a Web Viewer template.
7. Define the destination folder and the file name.
 - You can define the location and the name of the published model folder.
 - You can also rename the published file but do not change the file name...
extension (*.xml). By default, Tekla Structures creates a \PublicWeb folder with sub-folders in the current model folder and places the published model there as an index.html file.

8. Select the tooltip template.

You can create your own tooltip templates in Template Editor. The preview shows how the tooltip is shown in Web Viewer.

9. Click Publish.

The web browser includes several commands for examining the model. You can right-click the model in the browser to access a pop-up menu containing these commands.

TIP To use a large model faster in Web Viewer:

1. Right-click and select **Disable full content rendering** from the pop-up menu.
2. To enable full content rendering again, select **Enable full content rendering** from the pop-up menu.

See also

Customize Web Viewer tooltips (page 284)

Web templates in Web Viewer (page 285)

27.2 Customize Web Viewer tooltips

You can define what kind of tooltips are shown in a published Web Viewer model. Use Template Editor to create a tooltip template.

1. On the **File** menu, click **Editors --> Template Editor**.
2. Create a new template.
3. Save the template in the *.rpt format in the ..\Tekla Structures \<version>\Environments\<environment>\template\tooltips folder.
4. On the **File** menu, click **Export --> Publish as web page**.
5. Select a customized tooltip template in the **Tooltip in Web Viewer** list. The preview shows how the tooltip is shown in Web Viewer.
6. Click **Publish**.

NOTE If you do not want to show the template name as a file name in the tooltip template list, add the template in the `WebViewerTooltips.ini` file. The file is located in the same folder as the tooltip templates. For example, to show
See also
Publish a model as a web page (page 283)

27.3 Web templates in Web Viewer

All Web Viewer specific materials, for example, a tool (*.dll) for viewing the model and templates for HTML files are stored in the subfolders under .. \Tekla Structures\<version>\nt\WebTemplates\TeklaWebViewer.

When you publish a model as a web page, Tekla Structures copies the tool and the files to the folder you have given in the File name box in the Publish as Web Page dialog box. You cannot modify the tool, but you can modify the HTML files to include information that is relevant to your company and the project.

Project-specific fields must be inside % signs in the HTML files. Tekla Structures uses information from the model you are publishing in these fields. For example, when you want the project name to show in the Web Viewer model, add %NAME% in the HTML file. When you publish your model, Tekla Structures takes the project name from the project properties.

NOTE Do not remove the string %PUBLISHED_MODEL% from the index.html file. Tekla Structures replaces the string with the file name information from the Publish as Web Page dialog box.

See also
Publish a model as a web page (page 283)

27.4 Send Web Viewer models

When you have published a model as a web page in Web Viewer, you can send Web Viewer models to others as zipped files. You can also send a link to Web Viewer views or to the whole model.
See Publish a model as a web page (page 283) on how to publish a model in Web Viewer.

<table>
<thead>
<tr>
<th>To</th>
<th>Do this</th>
</tr>
</thead>
</table>
| **Send a Web Viewer model as a zipped file** | 1. Create a .zip file of the entire \PublicWeb folder that is under the model folder. Remember to use the folder structure.
2. Attach the .zip file to an e-mail message and send it to the recipient. When you receive a zipped Web Viewer model, ensure that you keep the folder names when extracting the files. To open the model, double-click the index.html file. |
| **Send a link to a Web Viewer view** | Use the **Send Web Viewer Link** tool in Web Viewer. See Create a named view in Web Viewer (page 286) for instructions on how to create named views. To see the view name in the Named views list, the recipient must copy the text string and paste it into the Web Viewer model. You can also send links to several views. Copy the text strings pointing to the views into a text file and send the text file. The recipient then copies the contents of the text file and pastes it into the Web Viewer model. |
| **Send a link to a Web Viewer model** | Use the **Send ULR Link** tool in Web Viewer. The recipient must have access to the folder that contains the published model. |

27.5 Create a named view in Web Viewer

You can zoom in the Web Viewer model and create named views.

1. In the \PublicWeb folder under the model folder, open the index.html of the published model.
2. Zoom in to the part of the model from which you want to create the view.
3. Right-click and select **Copy location**.
4. Create a new file in any text editor (for example, Microsoft Notepad) and paste the location information into it.
The file should look, for example, as follows:

```yaml
[webviewer pointinformation] name: "xyz"  
projectiontype: perspective  
position: (2947.732 809.072 11.216)  
direction: (0.128 0.974 -0.187)  
upvector: (0.024 0.185 0.982)
```

5. Replace the default name `xyz` with a name you want the view to have.
6. Select all text in the file, right-click and select **Copy** to copy the updated location information to the published model.
7. In Web Viewer, right-click on the model and select **Paste location**.

The view name appears in the **Named views** list.

Web Viewer does not save named views with the published model. You can save the text file that contains the location information, then copy the text to the published model in Web Viewer the next time you want to use the view.

To allow others to see your named views, send the views using the **Send Web Viewer link** tool.

See also

Send Web Viewer models (page 285)

27.6 View a model in Web Viewer

You can show and hide objects, and move and zoom in a model in Web Viewer.

See Publish a model as a web page (page 283) on how to publish a model in Web Viewer.

Show and hide objects in Web Viewer

<table>
<thead>
<tr>
<th>To</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hide an object</td>
<td>1. Move the mouse pointer over the object.</td>
</tr>
<tr>
<td></td>
<td>2. Hold down the Ctrl key and scroll up using the mouse wheel (or press the Page Up key).</td>
</tr>
<tr>
<td>Show a hidden object</td>
<td>1. Move the mouse pointer over the hidden object.</td>
</tr>
<tr>
<td></td>
<td>2. Hold down the Ctrl key and scroll down using the mouse wheel (or press the Page Down key).</td>
</tr>
<tr>
<td>Show all objects</td>
<td>Press the Esc key.</td>
</tr>
</tbody>
</table>
Move and zoom in Web Viewer

<table>
<thead>
<tr>
<th>To</th>
<th>Do this</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoom in or out</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Press the Page Up or Page Down key.</td>
</tr>
<tr>
<td></td>
<td>• Scroll the mouse wheel up and down.</td>
</tr>
<tr>
<td>Move the model</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Click Pan and drag.</td>
</tr>
<tr>
<td></td>
<td>• Drag with the mouse middle button.</td>
</tr>
<tr>
<td>Rotate the model</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Click Rotate and drag.</td>
</tr>
<tr>
<td></td>
<td>• Hold down the Ctrl key and drag with the middle mouse button.</td>
</tr>
<tr>
<td>Fly through the model</td>
<td>1. Click Fly and move the mouse forward to fly forward.</td>
</tr>
<tr>
<td></td>
<td>2. To change flying direction, move the mouse to the desired direction.</td>
</tr>
<tr>
<td></td>
<td>3. To stop, click Esc.</td>
</tr>
<tr>
<td>Center the model on the</td>
<td>Click Center.</td>
</tr>
<tr>
<td>screen</td>
<td>Return the model to the original view</td>
</tr>
<tr>
<td></td>
<td>Click Home.</td>
</tr>
<tr>
<td>Relocate the center of</td>
<td>1. Press the V key.</td>
</tr>
<tr>
<td>rotation</td>
<td>2. Click to select a new center of rotation.</td>
</tr>
</tbody>
</table>

You can also right-click the model and select the move and zoom commands from the pop-up menu.
Tekla BIMsight is a free project collaboration software.

With Tekla BIMsight you can combine models from different project participants and check for hard and soft conflicts visually and with conflict checking tools. You can communicate with other parties involved in the project by adding notes, markups and project documentation to the models.

You can download Tekla BIMsight at www.teklabimsight.com.

See also
Import reference models from Tekla BIMsight (page 289)
Import additional reference models from a Tekla BIMsight project (page 290)
Publish a model to Tekla BIMsight (page 290)

28.1 Import reference models from Tekla BIMsight

You can import models from a Tekla BIMsight project to Tekla Structures as reference models.

1. On the File menu, click Import --> Tekla BIMsight.
 The Import From Tekla BIMsight dialog box opens.
2. Browse for the Tekla BIMsight project (.tbp file).
3. Click Import to import the models from the Tekla BIMsight project.
 You may need to subdivide the reference models, fit the work area in the model, and change the main 3D view depth to see the reference models entirely after importing.

See also
Import additional reference models from a Tekla BIMsight project (page 290)
28.2 Import additional reference models from a Tekla BIMsight project

Additional models may have been added to a Tekla BIMsight project after you have imported reference models from the project to Tekla Structures. You can import the additional reference models to Tekla Structures.

1. Save the Tekla BIMsight project with the same name as previously.
2. In Tekla Structures, on File menu click **Import --> Tekla BIMsight**.
3. Browse for the Tekla BIMsight project (.tbp file).
4. Click **Import** to import the models from the Tekla BIMsight project.

New reference models are added to the Tekla Structures model. The existing reference models are not modified in any way. Tekla Structures keeps track of the reference models by checking the TeklaBIMsightGUID attributes.

28.3 Publish a model to Tekla BIMsight

You can publish your Tekla Structures model and the reference models included in the model as a Tekla BIMsight project file (.tbp).

1. On the File menu, click **Export --> Tekla BIMsight**.

 The **Publish to Tekla BIMsight** dialog box opens.
2. Enter a name for the project file.
3. Select the folder where you want to save the project file.
4. Select other options as required.
 - You can include assemblies, base quantities, bolts, grids and reinforcements in the published project.
 - You can split models according to phases.
 - Select the **Open After Publish** check box to open the project in Tekla BIMsight after publishing.
5. Do one of the following:
 - Click **Publish All** to publish the whole model. If the model contains reference models they are also included.
 - Click **Publish Selected** to publish the selected objects.

See also

IFC base quantities in exported IFC model (page 80)
Tekla Structural Designer is a software that allows you to design reinforced concrete buildings and steel buildings. It works with real physical objects such as beams, columns and slabs. The information transferred is the physical information such as geometry, section sizes and grade as well as attributed data. In Tekla Structures, you can import from and export to Tekla Structural Designer.

Tekla Structural Designer is a code-based modeling tool, which enables structural engineers to establish a code compliance design of the structure, and perform calculations and schema design, for example. All the design/code data is held within Tekla Structural Designer at all times.

Tekla Structural Designer will analyze and design structures to a range of International codes of practice.

The initial model can be started in either Tekla Structures or Tekla Structural Designer, depending on the project needs. You can import and export many times, and make use of the effective change management functionality.

The integration process allows you to pass models between Tekla Structural Designer and Tekla Structures, allowing the updates in the model at both ends. As the model is integrated between software applications, the changes are updated, and modifications performed since the last integration operation are maintained within the model.

Tekla Structural Designer and Tekla Structures accept and produce files in the .cxl neutral file format. The .cxl file format is an XML based neutral file format that allows applications to link Tekla Structural Designer.

Tekla Structures supports files created in Tekla Structural Designer 2016 or earlier.

See also

Import with Tekla Structural Designer integrator (page 293)
Re-import with Tekla Structural Designer integrator (page 295)
Export with Tekla Structural Designer integrator (page 296)
29.1 Example workflow of integration between Tekla Structures and Tekla Structural Designer

Integration between Tekla Structures and Tekla Structural Designer has been developed to ensure that the initial model can be started in either tool without any detriment to the design process. This added flexibility enables companies to align their software solutions closely to their own workflows. (i.e. The initial model can be created in Tekla Structural Designer by the engineer or in Tekla Structures by the technician.)

It is recommended that Tekla Structures model is used as the "master model" for geometrical changes as this model also is linked to the BIM documentation. Alterations made to the model geometry are best handled by altering the Tekla Structures model and transferring the changes through to Tekla Structural Designer for redesign.

A typical workflow and the decision making process through the different stages of a project could be as follows:

Initial scheme stage

- The initial model may be started in Tekla Structures or Tekla Structural Designer without any detriment to the process.
- A number of factors may determine which software is used for starting the modeling process, such as availability of staff, or deliverable requirements.
- Unless there are external drivers, Tekla Structures may prove to be the best starting point for the model as it can provide most of the deliverable items at the initial stage.
- The model does not need to cover the complete building, it might be a typical bay or floor, for example.
- The generated structure can be designed in Tekla Structural Designer for initial section sizing at the initial stage and synchronized back to Tekla Structures for initial drawings or material list creation.
- Simple drawings can be created at this stage, this can be done in Tekla Structures or Tekla Structural Designer.
- Initial material lists for cost estimates can be generated at this stage.

Detailed design stage

- It is not always appropriate to carry models forward from the Initial scheme stage to the Detailed design stage as changes to the overall scheme may have been made, which will not be reflected in the initial scheme model. It is sometimes better to begin the model again.
• Models can be started in Tekla Structures or Tekla Structural Designer to suit the user. The models can then be transferred to the other modeling system.

• Importantly, the two models can be worked on at the same time, with synchronization of the two models taking place to suit the workflow.

• Tekla Structural Designer can be used for a full gravity and lateral design of the structure.

• Within Tekla Structures, drawings can be generated to a tender stage level and general arrangements submitted to building control for approval.

Construction stage

• Using the model from the Detailed design stage, much of the Construction stage process will take place in Tekla Structures so that the integration with other disciplines can be accounted for.

• The design is not revisited unless the client drives the requirement for change.

• If a re-design of the structure is required, the same synchronization of Tekla Structures or Tekla Structural Designer models can be carried out to suit the user.

• The model will be completed within Tekla Structures and fully detailed drawings for parts can be created along with construction level arrangement drawings of the structure.

• Detail integration checks with other disciplines (e.g. mechanical and electrical engineers) can be carried out at this stage.

29.2 Import with Tekla Structural Designer integrator

Import with Tekla Structural Designer integrator creates Tekla Structures parts, such as beams, columns, slabs, and shear walls based on the contents of the imported .cxl neutral file.

Before importing, open Tekla Structures and the model where you want to import.

1. On the File menu, click Import --> Tekla Structural Designer.

2. In the import dialog box, enter the path of the import .cxl file in the Import file box or click the ... button next to the box to browse for the file.

3. Once you have selected a valid file, the import buttons and the Preview Conversion button will be enabled. To read the import file and display all
the proposed profile and material grade conversions to be used, click the Preview Conversion button.

The import uses an internal conversion list containing the standard profiles and grades. Any member with profile or material that cannot be converted using the internal conversion will be flagged in red and the Tekla Structures name will be replaced with the text *** NO MATCH ***.

4. If the text *** NO MATCH *** is displayed, you can convert the profiles and materials manually in the following way:
 a. Create a profile and/or material conversion file in a text editor using the file name extension .cnv.
 The conversion files can also be used to override the standard conversion.
 b. In the text file, enter the .cxl profile or material name, the equal sign (=) and then the corresponding Tekla Structures name, for example:
 STB 229x305x70=TEE229*305*70 for profile
 S275JR=S275 for material

 If the conversion files are not used, the members with profiles or materials that cannot be converted will still be created but they will use the import file profile or material, which may be invalid in Tekla Structures, and the members may be drawn as lines in the model, but can then be edited manually in Tekla Structures

5. Select the grid options:
 - **Delete Tekla Structures' grids**: Import will remove all grid lines/planes from the current Tekla Structures model.
 - **Import grids from import file**: The grid lines from the import file will be imported into the Tekla Structures model. A grid line pattern will be created, and all the imported grid lines will be attached as individual grid planes to this pattern.

6. Import by pressing one of the following buttons:
 - **Import at Origin**: Import the model using the global X, Y and Z coordinates with the global origin as the 0,0,0 point for the import model's coordinate system.
 - **Import at Location**: Select a point in the model to use as 0,0,0 and select a second point to define the X axis to use.

If none of the items in the import file have previously been imported into the current model, Tekla Structures imports the contents of the selected import file and creates all the required objects in the Tekla Structures model.

See also

Re-import with Tekla Structural Designer integrator (page 295)
29.3 Re-import with Tekla Structural Designer integrator

When you import from Tekla Structural Designer you can control which changes will be made in the Tekla Structures model. If none of the objects in the import file have been previously imported in Tekla Structures, the import will complete after Tekla Structures has created the required objects. If objects already exist then the new members will be listed as new, but if no objects exist then the import will just take place.

1. Follow the steps in Import with Tekla Structural Designer integrator (page 293).

2. To display the properties of an object, select the object from the list on the left in the import verification dialog box.
 If you select more than one object, only the properties for the first object on the list are displayed, but all the objects that you selected are highlighted in the model.

3. If any object in the import file has previously been imported into the Tekla Structures model, the Model Comparison Tool dialog box is displayed showing the changes and allowing you to control which changes will be made in the Tekla Structures model. You can do one of the following:
 - **Ignore deleted list**: The .cxl file may contain a list of objects deleted in Tekla Structural Designer. If objects in this list still exist in the Tekla Structures model, they will be deleted unless this check box is selected.
 - **Ignore new items**: Objects that did not previously exist in the Tekla Structures model that are in the import file are excluded from the import if you select this check box.

4. To append the Tekla Structures object ID to the object type string in the comparison tool list, select **Display part IDs**.

5. If updating the positions of objects is not required, selecting **Profile and material updates only** will only update the object profiles and materials, and ignore other changes.

6. To reduce the amount of information displayed about the objects that have been updated, select **Only display changed fields**.
 Only the values that have been changed are displayed instead of all the object properties.

7. Click **Accept** to use the current settings and complete the import.
 Once the import is complete you can view the changes in the model using **Tekla Structural Designer Integration Status** object group color and transparency settings (View tab --> Representation --> Object Representation).
29.4 Export with Tekla Structural Designer integrator

Export with Tekla Structural Designer integrator allows you to export the entire Tekla Structures model or a selected subset of the model. The exported .cxl file can be uploaded to Tekla Structural Designer to update the model, or to create a new Tekla Structural Designer model based on the Tekla Structures model.

Before exporting, open Tekla Structures and the model from which you want to export.

1. On the File menu, click Export --> Tekla Structural Designer.
2. In the export dialog box, either enter the path of the export file in the Export file box or click the ... button at the end to browse to a folder and enter a name for the file.
3. Once you have selected a valid file, the export buttons and the Preview Conversion button will be enabled. To process the model and display all the proposed profile and material grade conversions to be used, click the Preview Conversion button.

 The export uses an internal conversion list containing the standard profiles and grades. Any member with profile or material that cannot be converted using the internal conversion will be flagged in red and the export name will be replaced with the text *** NO MATCH ***.

4. If the text *** NO MATCH *** is displayed, you can convert the profiles and materials in the following way:
 a. Create a profile and/or material conversion file in a text editor using the file name extension .cnv.

 The conversion files can also be used to override the standard conversion.

 b. In the text file, enter the .cxl profile or material name, the equal sign (=) and then the corresponding Tekla Structures name, for example:

 STB 229x305x70=TEE229*305*70 for profile

 S275JR=S275 for material

 If the conversion files are not used, the objects with profiles or materials that cannot be converted will still be created but they will use the export file profile or material that may be invalid.

5. You can export the whole Tekla Structures model or only the objects that you select. Do one of the following to create the neutral file:
 a. To export the whole model, click Export Model.
• To export only the selected parts, select the parts from the model and click **Export Selected**.

The use of select and view filters is recommended to ensure that only structural part of the model or elements requiring design are exported.

The **Quick report** window will show you the result of the export.

See also

Additional information about integration between Tekla Structures and Tekla Structural Designer (page 297)

29.5 Additional information about integration between Tekla Structures and Tekla Structural Designer

• It is possible to round trip twin profile sections between Tekla Structural Designer and Tekla Structures. The UK twin profiles in Tekla Structural Designer have a fixed gap and have been added to the automatic conversion. For other countries, it is necessary to use the conversion file. The conversion file line for profiles is slightly different because you need to include the gap in the line.

See below for three different double-angle profiles from Tekla Structural Designer:

2xUEA(LL) 100x75x8#00615=RSA100*75*8:10(LL)
2xUEA(SL) 75x100x8#00616=RSA100*75*8:12(SL)
2xEA 120x120x10#00614=RSA120*120*10:12

• The number after the “#” symbol is the profile code in the .cxl or .3dn file format. The code is different depending on the profile type, whether it is metric or imperial and which country it is from.

• The first number in the profile code represents whether the profile is metric or imperial: 0 for metric, 1 for imperial.

• The next two digits in the profile code represent the country in this case 06 for UK.

• The last two digits in the profile code indicate the profile type, 15 for long leg to long leg, 16 for short leg to short leg and 14 for equal angles.

• The Tekla Structures profile is the L shape to use for each of the two members Tekla Structures will create to represent the single item in Fastrak. The number after the colon (:) is the gap to use between the profiles in Tekla Structures, and the (LL) and (SL) convey the required orientation of the members.
• On export, using the same conversion file, the two members in Tekla Structures will be written to the .cx1 file as one twin profile member assuming it is still logical and possible to do so.

• The current export excludes the Westok items from the export allowing the user to choose to retain Tekla Structural Designer items during the import to Tekla Structural Designer. This is currently the only way to retain the Westok properties in Tekla Structural Designer.

• Westok beams are imported from Tekla Structural Designer to Tekla Structures as parametric profiles. Currently only standard, circular, non-stiffened holes are imported.

• The cold rolled profile catalogs in Tekla Structural Designer differ from those in Tekla Structures. This means that transferring cold rolled members between the two systems is not always complete.

• The timber profiles in Tekla Structures differ from timber catalogs in Tekla Structural Designer. Therefore by default the timber conversions are limited, however resolving this issue is simply a matter of using a conversion file and creating any of the require profiles yourself in the Tekla Structures profile catalog.

• Curved objects can only be transferred from Tekla Structures to Tekla Structural Designer if they have been modeled as curved polybeams created using three points, because normal beams created with curved properties are not supported.

• Curved grids are currently imported into Tekla Structures as straight grids from the start to the end of the Tekla Structural Designer grid line, ignoring the curve.

• Tekla Structural Designer grid lines can be defined anywhere and can be completely irregular patterned. The import to Tekla Structures deals with this by creating a single grid pattern and adding all the grid planes to that grid pattern. Some of the advantages of making all the grid planes in a single grid pattern are that the intersection points work correctly and grid elevations views can be created easily. The main disadvantage of this method is that the grid pattern cannot be updated in Tekla Structures by making changes in the grid pattern's properties.

See also

Import with Tekla Structural Designer integrator (page 293)
Re-import with Tekla Structural Designer integrator (page 295)
Export with Tekla Structural Designer integrator (page 296)
Tekla Warehouse is a service for collaboration, and for storing and sharing Tekla Structures content.

Tekla Warehouse provides centralized access to a wide range of content that you can use in your Tekla Structures models.

With Tekla Warehouse you can:

• Publish your content online.
• Use your company network or a commercial file storage and synchronization service to share content.
• Save content locally for private use.

In Tekla Warehouse, content is organized into collections.

Tekla Structures collections contain official Tekla content that you can use in your models. The content is grouped by geographical area. There is also a global folder for content that is not location specific.

Tekla Warehouse has the following content categories:

• Applications
• Custom components
• 3D products
• Profiles
• Materials
• Bolts
• Reinforcement
• Model setup files
• Drawing setup files
• Report templates

Accessing Tekla Warehouse

To open Tekla Warehouse while using Tekla Structures, do one of the following:
• On the **File** menu, click **Tekla Warehouse**.
• Go to **Quick Launch**, and start typing **Tekla Warehouse**.

Tekla Warehouse Service

Tekla Warehouse consists of the Tekla Warehouse web site (https://warehouse.tekla.com/) and the Tekla Warehouse Service.

You need Tekla Warehouse Service to benefit from all the features Tekla Warehouse offers, for example, easy installation of content into a Tekla Structures model, or local and network collections.

See also

For more information on Tekla Warehouse, go to Tekla Warehouse and click **About**, or see **Getting started with Tekla Warehouse**.
Trimble Connector enables Tekla Structures to connect with Trimble Connect for sharing reference models.

With Trimble Connector, you can
- attach a Tekla Structures model to a Trimble Connect project and project folders
- download a reference model from a Trimble Connect project to a Tekla Structures model
- upload a Tekla Structures reference model to a Trimble Connect project
- export Tekla Structures model objects as an .ifc reference model to a Trimble Connect project

NOTE You need to have a Trimble Connect account before you can start using Trimble Connector.

- To download a reference model from a Trimble Connect project to a Tekla Structures model, click **File menu -- Import -- Trimble Connect**.
- To upload a Tekla Structures reference model to a Trimble Connect project, click **File menu -- Export -- Trimble Connect**.

The Trimble Connector dialog box opens.

Log in to Trimble Connect with your Trimble Connect username and password. You can then start working with Trimble Connector.

| Attach a Tekla Structures model to a Trimble Connect project and project folders | 1. Click `+`. The Select project dialog box opens. 2. Select the project geographical location in the Trimble Connect service. A list of available projects is shown. |
3. Select a project and click **OK**.
 The name of the selected project is shown on top of the **Trimble Connector** dialog box.
 Now you can attach folders to the project.

4. Click 📁.
 The **Select folders** dialog box opens. The previously selected project is shown.

5. Double-click the project to see the folders inside the project.
 A list of available folders is shown. You can select multiple folders, create new folders and delete existing folders from the list.
 If you create a new folder, enter the folder name in the box and click **Create**.

6. Select a folder and click **OK**.
 The selected folders are shown in the **Trimble Connector** dialog box.

<table>
<thead>
<tr>
<th>Download a reference model from a Trimble Connect project to a Tekla Structures model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Double-click a selected folder.</td>
</tr>
<tr>
<td>A list of reference models in that folder is shown.</td>
</tr>
<tr>
<td>2. A reference model that has not yet been downloaded to a Tekla Structures model has the 🌻 icon. Select a reference model and click 🌻.</td>
</tr>
<tr>
<td>The reference model is downloaded to a Tekla Structures model subfolder and inserted to the Tekla Structures model.</td>
</tr>
<tr>
<td>If you want to see a list of reference model versions, click the arrow in front of the reference model name. You can select any of the previous versions of the model and insert it to the Tekla Structures model by clicking 🌻.</td>
</tr>
<tr>
<td>When a reference model version has been inserted to the Tekla Structures model, the version gets the ✔️ icon.</td>
</tr>
<tr>
<td>If there is a reference model version that exists in the Tekla Structures model subfolder but has not been</td>
</tr>
</tbody>
</table>
inserted to the Tekla Structures model, the version gets the + icon.
When the reference model version is the same in Tekla Structures and in Trimble Connect, the model gets the ✓ icon.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download a reference model update from a Trimble Connect project to a Tekla Structures model</td>
<td>If a Trimble Connect project folder contains an update to a reference model that already has been downloaded to Tekla Structures, the reference model gets the 🔽 icon. Click the icon to download the latest version of the model.</td>
</tr>
<tr>
<td>Upload a Tekla Structures reference model to a Trimble Connect project</td>
<td>If a Tekla Structures model has a reference model inserted that has not been uploaded to a Trimble Connect project, the model gets the 🔽 icon. The models are listed at the bottom of the Trimble Connector dialog box. You can upload the reference model to a Trimble Connect project by clicking 🔽.</td>
</tr>
<tr>
<td>Upload a Tekla Structures reference model update to a Trimble Connect project</td>
<td>If a Tekla Structures model has an update to an inserted reference model, and the model has been published to a Trimble Connect project, the reference model gets the New version label. You can upload the reference model update to a Trimble Connect project by clicking 🔽.</td>
</tr>
</tbody>
</table>
| Export Tekla Structures model objects as an .ifc reference model to a Trimble Connect project | You can create an .ifc coordination view 2.0 file from Tekla Structures model objects and export it to a Trimble Connect project. You can create the file from selected model objects, or from all model objects.
1. Click 🔽 to start the export.
 The Configure IFC export dialog box opens.
2. Enter a name for the exported model.
 The model name is unique for a project.
3. Select the properties.
4. Click OK.
You can insert the reference model to the Tekla Structures model. Select the reference model and click 🔽. |
After a successful export, the model gets the 🔄 icon.

If the Tekla Structures model has an updated version of the exported reference model, click 🔄 to export the updated version of the reference model.

The .ifc file includes parts and grids. The .ifc file does not include assembly information, which means that you can export only main parts. You can add additional property sets by saving a property set in File menu --> Export --> IFC.

Trimble Connect related metadata and all reference models are in the ..\TeklaStructuresModels\<model>\TConnect folder. Exported reference model settings are stored to the ..\TeklaStructuresModels\<model>\Links folder. Trimble Connector does not work correctly if you manually modify the files in these folders.

See also

Import to and export from Tekla Structures (page 29)
Analysis and design systems are used to design and analyze the frame or components within a structure. These applications calculate the loading, stresses and strains on the elements. They also calculate the moments, shears and deflections on objects under various loading conditions.

These types of applications make use of various forms of analysis from the traditional first order static, second order p-delta, geometric non-linear or buckling analysis. They can also make use of various forms of dynamic analysis from modal extraction to time history and response spectrum analysis along with the sizing of steel, concrete and timber elements to the relevant national and international design codes.

Some examples of these systems are ETABS, STAAD.Pro, SAP2000, Robot, ISM, S-Frame, MIDAS, Dlubal, SCIA, Powerframe, GTStrudl, Strusoft, and AxisVM.

See also
Analysis and design direct links (page 305)
STAAD.Pro (page 307)
SAP2000 (page 306)
Robot (page 306)
ISM (page 307)
S-Frame (page 308)

32.1 Analysis and design direct links

When you have a direct link to an analysis and design application, and you export the analysis model from Tekla Structures using that particular analysis application, the model is opened in the application. Tekla Structures and the analysis and design application need to be installed on the same computer.

The analysis and design direct links are created either using the Tekla Open API or the older COM link (Common Object Model transfer technology). A
number of direct links are available including AxisVM, Diamonds, Dlubal, ETABS, GTStrudl, ModeSt, MIDAS, NISA, Powerframe, ISM, Robot, SAP2000, SCIA, S-Frame, STAAD.Pro, STRUDS, and Strusoft.

Many of the direct links are available for downloading in Tekla Warehouse. For the applications that are not available in Tekla Warehouse, the links can be downloaded from the vendor web sites or by contacting the vendor.

32.2 Robot

The Robot Millennium A&D application is owned by Autodesk Inc. Full product details can be found on the Robot Millennium web site.

- This application is suitable for basic interoperability, and it can export and import cis/2 files.
- If you install Tekla Structures and Robot Millennium on the same computer, then a direct link can be used.
- Currently only the EC3, LRFD, CM66, E32 and ANS design codes are available in Robot when using the direct link.
- If you are upgrading to Robot 2012, you will need to uninstall Robot 2011 along with the Autodesk Robot Structural Analysis link. Then install Robot 2012 and the link again. This way you make Tekla Structures point to the Robot 2012 application.

To get more information and to download, go to Tekla Warehouse

See also

- Linking Tekla Structures with Robot
- Analysis and design direct links (page 305)

32.3 SAP2000

The SAP2000 analysis & design application is written by Computers & Structures, Inc. Full product details can be found on their website.

- The SAP2000 analysis & design application can export and import cis/2 and ifc files, and export SDNF files.
- If Tekla Structures and SAP2000 are installed on the same computer, then a direct link can be used.
- It is important that you run SAP2000 for the first time as a standalone application before your load the link. Just start SAP2000 and create a new
model, save it and close SAP2000. This will then update your registry which is needed by the link.

To get more information and to download, go to Tekla Warehouse.

See also
Linking Tekla Structures with SAP2000
Analysis and design direct links (page 305)

32.4 STAAD.Pro

The STAAD.Pro analysis and design application is owned by Bentley Systems, Incorporated. Full product details can be found on their website.

• STAAD.Pro can export and import CIS/2 files, along with their std format. It has become a semi-industrial standard especially in the plant and heavy engineering segments.

• If Tekla Structures and STAAD.Pro are installed on the same computer, then a direct link can be used.

• Profile mapping for different installation environments is achieved by mapping the profiles used by Tekla Structures and Bentley in files called ProfileExportMapping.cnv and ProfileImportMapping.cnv located in the TeklaStructures\TS_STAAD folder. Currently these files are only used in import.

To get more information and to download, go to Tekla Warehouse.

See also
Linking Tekla Structures with STAAD.Pro
Analysis and design direct links (page 305)

32.5 ISM

Bentley’s Integrated Structural Modeling (ISM) is a technology for sharing structural engineering project information among structural modeling, analysis, design, drafting and detailing applications.

ISM is similar to Building Information Modeling (BIM), but focuses on the information that is important in the design, construction and modification of the load bearing components of buildings, bridges and other structures. Full product details can be found on their website.

The ISM link is different from the other analysis and design links in that the physical model is also transferred at the same time as the analysis and design
model and the ISM model can be imported into an empty Tekla Structures model. The round-trip of model information is also controlled by a synchronizer.

If Tekla Structures and an ISM enabled Analysis & Design application or Bentley Viewer v8i are installed on the same computer then a direct link can be used.

In order to use the link, the ISM Structural Synchronizer version 3.0 needs to be loaded before the link.

For more information and to download, go to Tekla Warehouse.

See also

- Linking Tekla Structures with an ISM enabled Analysis & Design application
- Analysis and design direct links (page 305)

32.6 S-Frame

S-Frame Analysis is owned and developed by S-FRAME Software Inc. It is a complete 4D structural modeling, analysis and design solution for steel, concrete, linear and non-linear structural models. Full product details can be found on their website https://s-frame.com.

- S-Frame can export and import `.dxf` files. If Tekla Structures and S-Frame are installed on the same computer, then a direct link can be used. A copy of the link can be requested from S-FRAME Software Inc. Descriptions regarding the link can be found here: [Building information modeling (BIM) links](https://s-frame.com).

- In some areas S-Frame used to be distributed by CSC, in which case the installation points to different folders. The model name must not include spaces as this currently is an issue as the analysis and design frame is not created if spaces are included.

The process of importing to and exporting from S-Frame

The Tekla API link allows you to write code to connect to an open model in Tekla and query or manipulate the model. The link was established by using
both the S-Frame and Tekla APIs. It uses a library database to manage items between Tekla Structures and S-Frame.

A copy of the link and instructions on using the link can be requested from S-Frame Software Inc.

The whole process involves the following steps: importing to S-Frame, displaying imported items, and exporting from S-Frame. This process is described below.

Importing objects to S-Frame and displaying the objects

1. The S-Frame software checks to see if there is an open model in Tekla Structures using the Tekla API.
2. If a connection can be established, the Tekla Structures model is queried for a list of model objects, such as modeled members or panels.
3. The returned objects are iterated through, recognized types are processed, and equivalent S-Frame objects are added or updated to a library database.
4. The IDs from Tekla Structures are stored so that items can be mapped back and forth between Tekla Structures and S-Frame.
5. Once the objects have been iterated through, the library database is queried, and the updated or created objects referenced in the library are displayed in S-Frame display window.

Exporting from S-Frame

1. The S-Frame is queried for objects that are displayed in the S-Frame display window.
2. The library is iterated through for types of known objects (members and panels) that can be mapped back and forth between Tekla Structures and S-Frame.
3. Using the unique IDs stored in the import, the Tekla Structures model is queried to see if items exist. If they do not, they will need to be created, and the library will be updated.
4. Items can then be added or updated to Tekla Structures to match what is in S-Frame.
Disclaimer

© 2016 Trimble Solutions Corporation and its licensors. All rights reserved.

This Software Manual has been developed for use with the referenced Software. Use of the Software, and use of this Software Manual are governed by a License Agreement. Among other provisions, the License Agreement sets certain warranties for the Software and this Manual, disclaims other warranties, limits recoverable damages, defines permitted uses of the Software, and determines whether you are an authorized user of the Software. All information set forth in this manual is provided with the warranty set forth in the License Agreement. Please refer to the License Agreement for important obligations and applicable limitations and restrictions on your rights. Trimble does not guarantee that the text is free of technical inaccuracies or typographical errors. Trimble reserves the right to make changes and additions to this manual due to changes in the software or otherwise.

In addition, this Software Manual is protected by copyright law and by international treaties. Unauthorized reproduction, display, modification, or distribution of this Manual, or any portion of it, may result in severe civil and criminal penalties, and will be prosecuted to the full extent permitted by law.

Tekla, Tekla Structures, Tekla BIMsight, BIMsight, Tekla Civil, Tedds, Solve, Fastrak and Orion are either registered trademarks or trademarks of Trimble Solutions Corporation in the European Union, the United States, and/or other countries. More about Trimble Solutions trademarks: http://www.tekla.com/tekla-trademarks. Trimble is a registered trademark or trademark of Trimble Navigation Limited in the European Union, in the United States and/or other countries. More about Trimble trademarks: http://www.trimble.com/trademarks.aspx. Other product and company names mentioned in this Manual are or may be trademarks of their respective owners. By referring to a third-party product or brand, Trimble does not intend to suggest an affiliation with or endorsement by such third party and disclaims any such affiliation or endorsement, except where otherwise expressly stated.

Portions of this software:

D-Cubed 2D DCM © 2010 Siemens Industry Software Limited. All rights reserved.
EPM toolkit © 1995-2004 EPM Technology a.s., Oslo, Norway. All rights reserved.

Open CASCADE Technology © 2001-2014 Open CASCADE SA. All rights reserved.

FLY SDK - CAD SDK © 2012 VisualIntegrity™. All rights reserved.

Teigha © 2003-2014 Open Design Alliance. All rights reserved.

PolyBoolean C++ Library © 2001-2012 Complex A5 Co. Ltd. All rights reserved.

FlexNet Copyright © 2014 Flexera Software LLC. All Rights Reserved.

This product contains proprietary and confidential technology, information and creative works owned by Flexera Software LLC and its licensors, if any. Any use, copying, publication, distribution, display, modification, or transmission of such technology in whole or in part in any form or by any means without the prior express written permission of Flexera Software LLC is strictly prohibited. Except where expressly provided by Flexera Software LLC in writing, possession of this technology shall not be construed to confer any license or rights under any Flexera Software LLC intellectual property rights, whether by estoppel, implication, or otherwise.

To see the third party licenses, go to Tekla Structures, click File menu --> Help --> About Tekla Structures and then click the 3rd party licenses option.

The elements of the software described in this Manual are protected by several patents and possibly pending patent applications in the United States and/or other countries. For more information go to page http://www.tekla.com/tekla-patents.
Index

dstv2dxf.def ..191

3D DWG/DXF
exporting.. 88

A
abs files..217
analysis & design
direct links..305
Robot..306
SAP2000..306
systems..305
ASCII
exporting..146,147
file description..147
importing..146,147

B
base quantities...80
Bus..121
importing...141
BVBS
calculating bar length..................................224
export settings..218
exporting...217

C
CAD models
re-importing...133
CAD..121
export file types..115
exporting...127,128
import file types.......................................115
importing...115,116
Calma...121
change detection for reference models...........44
checking reference model contents..............50
checking
exported IFC model....................................79
CIMSteel..121
conversion files..161
exporting...157
exporting to an analysis model...................158
importing...157
CIMSteel design/manufacturing models
exporting...159
CIS Model...121
CIS Model/CIMSteel..................................121
CIS status...121
CIS/2..157
CIS..307
conversion files..161
exporting...157
exporting to an analysis model...................158
importing...157
CNC..167
compatible software.................................13
contour marking......................................187
conversion files..31
CIMSteel...161
creating...33
twin profiles..32
converting IFC objects...............................58
Convert_DSTV2DXF..................................191
creating
contour marking.....................................187
creating layout line..................................272
creating layout point..................................271
creating
conversion files.....................................33
layers for DWG export................................100
Layout Manager groups..............................269
NC files in DSTV format............................170
NC files in DXF format..............................191
pop-marks...183
rule for DWG export............................. 100
selection filter for DWG export............99
tube NC files...190
customizing
 NC file header information...............182
cxl..291
defining custom line type for DWG export....101
definition of custom line type mappings for DWG export...........95
definition of default line types.............98
definition of export layers................92,94,95
definition of export example..............99
definition of exporting....................89,91,95
definition of DSTV.................................121,137,167
definition of converting to DXF.............191
definition of creating NC files............170
definition of exporting......................143,144
definition of importing......................137
definition of supported entities..........144
DSTV file description........................168
dstv2dxf.exe...191
DWG..86
drawing export layers......................92,94,95
drawing example..................................99
drawing of exporting.........................88
drawing of drawings.........................89,91
drawing of importing.........................87
drawings in export layers...................92
DXF..86,167
creating from NC files.......................191
creating export layers......................92,94,95
creating 3D...88
creating drawings............................89,91
creating importing............................87
drawings..95
drawings to 2D DWG/DXF files.............89,91
DSTV..143
ELiPLAN...209,210
exporting...29
exporting CAD.....................................127
exporting 3D...88
exporting ASCII.................................146
exporting CAD export files...............115
exporting checking exported IFC model....79
exporting compatible formats...............11
exporting compatible software.............13
exporting DGN.....................................110
exporting drawing............................103
exporting drawing layers..................92,94,95
drawings..95
drawings to 2D DWG/DXF files.............89,91
objects in export layers...................92

E

ELiPLAN
 export settings...............................212
 exporting..209,210
 importing..209
Eureka LMP..121
examples
 converting IFC objects.....................60
 creating layers for DWG export........100
 creating rule for DWG export............100
 creating selection filter................99
 defining custom line type for DWG export...101
 defining line types and weights for layers...102
 exporting drawing to DWG..................103
 setting up layers for DWG export.........99
 assigning objects...........................92
 copying to another project...............95
 export types.....................................29
 exporting CAD...................................127
 exporting 3D....................................88
 ASCII...146
 exporting CAD export files...............115
 exporting checking exported IFC model....79
 exporting compatible formats...............11
 exporting compatible software.............13
 exporting DGN....................................110
 exporting drawing.........................103
 exporting drawing layers..................92,94,95
 drawings..95
 drawings to 2D DWG/DXF files.............89,91
 DSTV...143
 ELiPLAN...209,210
 FEM..128
 FEM export file types......................136
IFC base quantities..........................80
into IFC..74
layers..91
Layout Manager.........................268
layout points............................274
MIS list.................................163
model to Tekla BIMsight............290
PDMS..128
PML..128
SDNF...128
SketchUp..................................85
STAAD.......................................268
supported DSTV entities............144
to a CIMSteel analysis model........158
to CIMSteel design/manufacturing
to HMS.......................................204
Unitechnik............................226,228,233,243,248,256,258,259,261,
265,266
XML...128

F
FabTrol XML...............................165
importing..................................165
FEM..121,128
export file types.....................136
import file types.....................136
importing..................................136
file formats..............................10
files
conversion..........................31,32,33
firm folders
exporting drawings...............95
fittings in NC files...............189
formats
in import and export...............11

H
header
NC files..................................182
HMS...204
exporting from Tekla Structures...204
project data in export.............205
slab data in export..................205
steel part data in export..........205

I
IFC...57
base quantities..........................80
checking exported IFC model........79
converted objects......................58
defining IFC entity for exported objects
...72
defining IFC entity on project level...71
defining property sets in export.....77
example of converting IFC objects...60
export.....................................70
export coordinate system............77
exporting Tekla Structures models..74
import.....................................57
object conversion limitations......63
object converter.......................58
profile conversion....................59
property set configuration files....80
reference model assemblies........55
spatial structure of exported model..72
supported schemas....................57
using Organizer spatial hierarchy in
export.....................................74
import types............................29
importing points.....................280
importing.................................29
additional models from Tekla BIMsight...290
ASCII.................................146
Bus.......................................141
CAD..115,116
CAD import file types..............115
CAD models..........................133
CIMSteel.................................157
CIS..157
compatible formats..................11
compatible software................13
DSTV......................................137
DWG files...............................87
DXF files...............................87
ELiPLAN.................................209
FabTrol XML..........................165
FEM...136
FEM import file types.............136
from Tekla Structural Designer....293
Layout Manager.......................... 268,277
layout point...................................... 279
models.. 121
PDF to model.................................. 114
Plantview models.......................... 119
re-importing a model....................... 133
reference models........................... 36,37,57
reference models from Tekla BIMsight....
289
reports.. 134
SDNF.. 116
STAAD.. 138
Stan 3d... 140
SteelFab/SCIA................................. 120
user-defined attribute values....
150,151,152,154
industry standards.......................... 10
inquiring
reference model contents.................. 50
inserting
reference models............................ 37
interoperability
compatible formats.......................... 11
compatible software........................ 13
definition.. 9
ISM.. 307

L

LandXML....................................... 112
layers
assigning objects in drawing export.... 92
copying to another project............... 95
in drawing export......................... 91,92,94,95
Layout Manager
coordinates................................. 270
creating layout line....................... 272
creating layout point...................... 271
default numbering.......................... 270
defining groups............................. 270
exporting....................................... 268,274,276
exporting drawings....................... 276
field point.................................... 280
groups... 269
importing...................................... 268,277,279
importing points........................... 280
measured point.............................. 280
viewing.. 273
line cuts in NC files.......................... 189
line types
customizing.................................. 91
in drawings.................................. 98
mapping...................................... 91,95
locking
reference models........................... 43

M

manufacturing models.................... 159
mapping line types.......................... 91
mapping
line types for drawing export........... 95
matexp_cis.cnv................................ 161
MicasPlus...................................... 121
MIS.. 163
exporting...................................... 163
file type information..................... 164
models
importing................................. 121

N

NC files
destination folder......................... 171
settings.. 171
NC files
contour marking............................ 167
creating....................................... 170
creating contour marking................ 187
creating in DXF format.................... 191
creating pop-marks....................... 183
customizing file header information.. 182
DSTV file description..................... 168
fittings.. 189
line cuts....................................... 189
NC file headers............................. 167
pop-marks.................................... 167
tube NC files............................... 190

O

object conversion.......................... 63
objects.inp..................................... 42
PDF
import ...114
importing to model114
PDMS ... 128
Plantview ..121
importing models .. 119
PML
exporting .. 128
pop-marks
creating ...183
prfexp_cis.cnv ..161
project folders
exporting drawings 95
project
defining IFC entity for export71
property set configuration files
in IFC export .. 80
property sets
defining in IFC export77
publishing
model to Tekla BIMsight 290
reference model
LandXML ..112
reference models
locking ..43
reference models
assemblies ... 55
checking contents .. 50
detecting changes .. 39,44
hiding and showing .. 39
hierarchy ... 52
highlighting in model view 39
importing ..37
inquiring contents ... 50
inquiring native reference objects 52
loading .. 36
modifying details ... 42
opening reference models list 39
reference model objects 51
showing details ... 39
showing layers ..39
supported DGN objects108
Trimble Connector .. 301
updating ..39
user-defined attributes 39
reports
importing ...134
Robot .. 306
S-Frame
displaying ...308
exporting ...308
importing ...308
SACS ..121
SAP2000 ... 306
SDNF ... 121
exporting ...128
importing ...116
SketchUp ... 85
exporting ... 85
software ..13
Staad ... 121
exporting ...142
importing ...138
table type specifications140
STAAD.Pro ... 307
Stan 3D ... 121
importing ...140
SteelFab/SCIA .. 121
importing ...120
table type specifications
STAAD .. 140
Tekla BIMsight .. 289
importing additional models 290
importing reference models 289
publishing models from Tekla Structures 290
Tekla Structural Designer 291
exporting to ...296
importing from .. 293
re-importing from ... 295
Tekla Warehouse ... 299
Tekla Warehouse Service 299
tube NC files ...190
twin profiles
conversion..32

U
uni... 228
Unitechnik
 exporting....
 226,228,233,243,248,256,258,259,261,
 265,266
user-defined attribute values
 importing......................... 150,151,152,154

V
viewing
 layout lines...273
 layout points... 273

W
Web Viewer
 creating named views.........................286
 e-mailing models.................................285
 full content rendering.........................283
 large models..................................... 283
 moving objects................................. 287
 publishing a model as web page...............283
 receiving models................................. 285
 sending links..................................... 285
 sending models................................. 285
 Tekla Web Viewer................................. 283
 tooltips... 284
 viewing objects................................. 287
 web templates................................. 285
 zooming... 287

X
XML
 exporting...128